Hafnian of two-parameter matrices

Автор: Efimov D.B.

Журнал: Известия Коми научного центра УрО РАН @izvestia-komisc

Статья в выпуске: 5 (57), 2022 года.

Бесплатный доступ

The concept of the hafnian first appeared in the works on quantum field theory by E. R. Caianiello. However, it also has an important combinatorial property: the hafnian of the adjacency matrix of an undirected weighted graph is equal to the total sum of the weights of perfect matchings in this graph. In general, the use of the hafnian is limited by the complexity of its computation. In this paper, we present a method for the exact calculation of the hafnian of two-parameter matrices. In terms of graphs, we count the total sum of the weights of perfect matchings in graphs whose edge weights take only two values. This method is based on the formula expressing the hafnian of a sum of two matrices through the product of the hafnians of their submatrices. The necessary condition for the application of this method is the possibility to count the number of k-edge matchings in some graphs. We consider a special case in detail using a Toeplitz matrix as the two-parameter matrix. As an example, we propose a new interpretation of some of the sequences from the On-Line Encyclopedia of Integer Sequences and then provide new analytical formulas to count the number of certain linear chord diagrams.

Еще

Hafnian, matching, weighted graph, toeplitz matrix, arc diagram, triangular lattice

Короткий адрес: https://sciup.org/149141290

IDR: 149141290   |   DOI: 10.19110/1994-5655-2022-5-15-19

Список литературы Hafnian of two-parameter matrices

  • Bjorklund, A. A faster hafnian formula for complex matrices and its benchmarking on a Supercomputer / A. Bjorklund, B. Gupt, N. Quesada // ACM J. Exp. Algorithmics. - 2019. - V. 24. - Article 1.11. - P. 1-17.
  • Grimson, R.C. Enumeration of dimer (domino) configurations / R.C. Grimson // Discrete Math. - 1977. - V. 18. - P. 167-178.
  • Krasko, E. Enumeration of chord diagrams without loops and parallel chords / E. Krasko, A. Omelchenko // Electron. J. Combin. - 2017. - V. 24. - № 3. - Article P3.43. - P. 1-23.
  • Sullivan, E. Linear chord diagrams with long chords / E. Sullivan // Electron. J. Combin. - 2017. - V. 24. - № 4. - Article P4.20. - P. 1-8.
  • Zaslavsky, T. Complementary matching vectors and the uniform matching extension property / T. Zaslavsky // European J. Combin. - 1981. - V. 2. - № 1. - P. 91-103. ъ.
  • Young, D. The number of domino matchings in the gameof memory / D. Young // J. Integer Seq. - 2018. - V. 21. - № 8. - Article 18.8.1. - P. 1-14.
  • Ефимов, Д.Б. Гафниан теплицевых матриц специального вида, совершенные паросочетания и полиномы Бесселя / Д.Б. Ефимов // Вестник Cыктывкарского университета. Серия 1: Математика. Механика. Информатика. - 2018. - № 3 (28). - С. 56-64.
  • Sloane, N.J.A. The on-line encyclopedia of integer sequences/ N.J.A. Sloane et al. // - 2022. - [electronic resource]. URL: https://oeis.org/.
  • Cameron, N.T. Statistics on linear chord diagrams / N.T. Cameron, K. Killpatrick // Discrete Math. Theor. Comput. Sci. - 2019. - V. 21. - № 2. - Article 11. - P. 1-11.
Еще
Статья научная