Hardy type inequalities in classical and grand Lebesgue spaces lp), 0

Автор: Ouardani Abderrahmane, Abdelkader Senouci

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 2 т.26, 2024 года.

Бесплатный доступ

In 2020 Rovshan A. Bandaliev et al. proved the boundedness of Hardy operator for monotone functions in grand Lebesgue spaces Lp)(0,1), 0

Еще

Inequalities, quasi-monotone functions, hardy operators, grand lebesgue spaces, weighted lebesgue spaces

Короткий адрес: https://sciup.org/143182662

IDR: 143182662   |   DOI: 10.46698/q9607-8404-0437-r

Текст научной статьи Hardy type inequalities in classical and grand Lebesgue spaces lp), 0

For 0 < p <  от we denote L p , w (0,1) the set of all Lebesgue measurable functions, such that

/ 1

Ilf ^Lp,w (0,1) = Ilf llp,w = ( j \f (x)lp w(x) dxj < ю>C

\ 0/ where w E Ll°c(0,1) and w(x) > 0, a. e.

In 1992 T. Iwainiec and C. Sbordone [1] introduced a new type of function spaces Lp)(Q), 1 < p < to, where Q is a bounded open set Q C Rn, called grand Lebesgue spaces. Namely, the grand Lebesgue spaces are defined as the space of the Lebesgue mesurable functions f on Q such that

Ilf lip) = suP

0 1

(iQ Zlf(x,r* \ Q

dx

p-ε

< от ,

where | Q | is the Lebesgue measure of Q.

  • # This work is supported by university of Tiaret, PRFU project, code: COOL03UN140120180001.

(c) 2024 Ouardani, A. and Senouci, A.

These spaces were intensively studied during the last years due to different applications (see [2] and [3]) and continue to attract attention of researchers (see [4–6]).

We state the following definitions,proposition and corollary that are useful in the proofs of main results.

Definition 1 [7]. Let 0 < p C 1. We say that function f belongs to the grand Lebesgue space Lp)(0,1), if f is non-negative and Lebesgue measurable a. e. on (0,1) for which г/ If (x)|p-'

< X .

Il f llLp ) (0 , 1) = suP

0 2

Definition 2 [7]. Let 0 < p C 1. We denote by Ap the class of measurable functions f G Lp)(0,1), such that

Ilf II A p = sup

0 2

г У ( x p - s -1 1 ) f p - s (x) dx

1 p-ε

< X .

Remark 1. In [7] was proved that for 0 < p C 1, L p ) (0,1) is quasi-Banach function space over (0,1). In this case if w = 1, (1.1) becomes quasi-norm of usual Lebesgue space L p (0,1).

The following definition is well-known (see [8]).

Definition 3. We say that a function f is quasimonotone on ]0, x[ , if for some real number a, x a f (x) is a decreasing or an increasing function of x. More precisely, given в G R , we say that f G Q e if x - e f (x) is non-increasing and f G Q e if x - e f (x) is non-decreasing.

The following proposition was proved in [8].

Proposition 1. Let —x < в < +x and 0 < p C 1. (a) Let f G Qe, 0 C a < b C x for в > -1 and 0 < ■ If в = —1, then a < b C x for в C —1.

/ b \ p

( jf (t) dt l C p | в + 1 | 1- p

a

If в = 1 , then

b

t e +1

t β

a ]      f p (t) dt.

  • (1.2)

pb

p- 1

f p (t) dt.

  • (1.3)

The inequalities hold in the reversed direction if 1 C p <  x .

  • (b)    Let f G Q e and 0 C a < b C x for в <  - 1 and 0 C a < b <  X for в ^ - 1 .

If в = 1 , then

b

p

C p | в + 1 | 1- p

t e +1 b e +1

t β

lj      f p (t) dt.

  • (1.4)

If в = 1, then

b \ p

У f (t) dt j

a

C p У (t In b )     f p (t) dt.

a

  • (1.5)

The inequalities hold in the reversed direction, if 1 C p <  x .

  • (c)    The constants in these inequalities are the best possible in all cases.

If in (1.2), (1.4), (1.3) and (1.5) we set a = 0, b = 1, a = 0, b = x , a = x , b = 1 and a = x , b =1 respectively, then we get the following corollary.

Corollary 1. Let 0 < p 1 .

  • (a)    If в >  - 1 , f Q e , then

1         \ p                    1

f f (t) dt] ^ P |в + 1Р—У tp-1f p(t) dt.

  • (b)    If в >  - 1 , f € Q e , then xp                  x

У f (t) dt ] p 1 в + 1 | 1- РУ ( t - e | t e +1 - x e +1 |) p f p (t) dt.

  • (c)    If f Q - 1 , then

    (1.6)


    (1.7)


    { 1        \ p

    [ у f (t) dt ]

    x

    (d) If f Q -1 , then

    / 1         \ p

    I У f ( t ) dt ]

    x


    < p У ( t In | )     f p (t) dt.

    x


    < p У (t In b)     f p ( t ) dt.

    x


    (1.8)


    (1.9)


  • 2. Main Results

The constants in these inequalities are the best possible.

Throughout the paper, we will assume that the functions are non-negative and Lebesgue measurable on (0,1). We consider the Hardy operators

x

(H 1 f )(x) = 1 У 0

f ( t ) dt,

1 (H2f) (x) = 1 У x f (t) dt.

Theorem 1. Let 0 < p <  1 , в >  — 1 , w(x) = x p 1 1 , 0 < x <  1 and f € Q e . Then the inequality                                                    1

IHf Hmw « [(в + i)1-p j^| p IlfIl„(0,1)                (2-D holds, where [(в + 1)1-p ^p] p is the sharp constant (the best possible).

<1 By applying Corollary 1 (a), we obtain

I H 1 f I l p (0J) =

' 1                   \ p / 1       / x \ p \ p

У (H 1 f) p (x) dx ] = 1 У x p 1 У f (t) dt ] dx ]

p

= ! xp I I f (t)X (0 ,x ) (t) dt] dx 00

p

1            1

: <  p p + 1) p

" 1       / 1                           \

/ x p I I fp^X^tW -1 dt ] dx

1 p

Now, by the Fubini theorem, we get

l H 1 f к (0 , 1)

1            1-p

< p p + 1) p       f p (t)t

оp- 1

dt

p

—Ш ' (в+1)

1                               \ p

[ f p (t)t p -1 ( 1 - t 1- p ) dt I

—Ш P <в+1) *

1                           \ P

I( t p - 1 - 1 ) f p (t)dt j , 0

thus

»H1f k(0,1) <[(i-p) (' + 1)1-p] p llf Il,.(00) • p-1

Let f (x) — (в + 1) P хв. Indeed, lH1f Имо,1) =

p -1

(в + 1) P

p tβ dt   dx

p

p -1

— (в + 1) P I / x -

T (e+1)p    \ p p x      dx

(в + 1) p

— (в + 1) P ( I

1         \ P xβp dx

— (в + 1) - p (      ) P

\ 'p + 1/

and

llf \\lp, w (0 , 1) -

1                           \ P

I ( t p-1 - 1 ) f p (t) dt j 0

1                                      \ P t (tp-1 -1) (в + 1)p-1tep dt I

so

p-1

— (в + 1) P

- t ep )"j — ( в +1) (    ...

-"■ •"“ KnoW l^r-

1    \ P

'p + 1)

I       ( в +1) 1

-p

p llf BLp,w(0,1)

К 1 У1' ■1, 1 T

p-1

+ 1) P

(' p7(.+1П

1 \ p

'p + 17

-(в + 1) - 1          1P

The proof is complete. >

Remark 2. If в = 0 in (2.1), we have Theorem 1 of [7].

Theorem 2. Let 0 < p <  1, в >  - 1, w(x) = /J (1^в- 1)+1 dt and f ^ Q в Then the inequality

W Hf W l ' (0 , 1) « ( p(в + l) 1- p ) 1 Il f W l ,,w (0 , 1) ■                        (2-2)

holds, where (р(в + 1) 1 p) p is the sharp constant.

<1 By using Corollary 1 (b) and the Fubini theorem, we have p 1

W H 1 f W L p (0 , 1) = ^ x p ^/ f (t) d^ dx ^

1               1 — I

< p p (в + 1) p

1            1—p

= p p + 1) p

1          1—p     г

= p p + 1) p Jf p (t)t 0

х в +1

-

t e +1

p- 1

f p (t) dt

dx

1 p

x e + - t e +1 )p f p (t) X (o, x ) (t) dt j dx

■ -в ( р-1) | [

t

1 p

x p ( x e +1 t e +1 )     dx j dt

1 p

.

Let x = -, thus y, f p(t)t-e(p-1)

t p y p

( t e +1 y в 1 t e +1 )    ty 2 dy j dt

1            1—p

= p p (в + 1) p j f p (t)t 0

1 p

/ 1 y e +1 V-1 к У в +1 )

dt

1           1—p    г

= p p (в + 1) p J f p (t) 0

■—e(p - i) t p+i t (e+i)(p - i)

y e ( p -1) + 1

dy dt

1           1—p

= p p + 1) p

Wf W L p,w (0 , 1)

p 1 o

Let f (x) = (в + 1) p х в . Indeed,

W H 1 f W l , (0 , 1) =

1 x                     p

У 1 У          p—1 ~

~ I / (в + 1) ' t e dt j dx

1 p

= (в + 1) 'f

1    \ '

вp + 1)

and

II f kp,w (0,1) = (f + 1) Р -1 Х вР (/ \ 0                  \x

1 p-1 = ( в + 1) p [J    t e(p - 1)+1

p- 1

t e ( p- i)+i

1 ) p

so

p-1             - 1

= (в + 1) p (вр + 1) p

p-1

= (в + 1) p

(вр + 1) p + 1) p

1                          \ p j te (1 - te+1)p 1 dt )

1                                      1

( / (в + 1)t e ( 1 - t e +1 ) p 1 dt )

= № +1) 2- p (вр +1) ) - p ,

( р(в + 1) 1- p ) P I f ||

WM) = Ив + !) 1- p) p Ив + «’ —p (вр + 1))

- 1

= (в + 1) p (вр +1) p .

The proof is complete. >

Remark 3. If в = 0 in (2.2), we get Theorem 2 of [7].

Theorem 3. Let 0 < p <  1 , 0 < a ж, w(t) = (in (a ))p 1(1 tp—^—p), 0  1, and f G Q-1- Then the inequalty

W Hf Lp(0 , 1) ^ ( 1 - p )   Ilf ^ L p,w (0 , 1) ,

(2.3)

holds, where ( ^^p ) p is the sharp constant.

<1 By applying Corollary 1 (c) and the Fubini theorem, we obtain

W Il L p (0,1) = (У (H 2 f) p (x) dx a

<

/ x ( p ht in ( at ))    f p ( t ) dt )

ax

dx

1 p

= p p

У У in Q У f p (t) [ У x-p dx ) dt aa

1 p

= ( A)' (/ f ""1" ( a ))

p - 1                    \p

( 1 t p -1 a 1- p ) dt I ,

thus

W H 2 f W lp (0 , 1)

C

( p ^ p

1 - p

Ilf H L p,w (0 , 1)

Finally, we obtain the required inequality.

We suppose that there exists C >  0, such that C C (1 -- p) p , thus C 1 = C p (1 - p) C p, then one can conclude that exists C i , C i C p , which contradicts the fact that p is the smallest possible in (1.8). >

Theorem 4. Let 0 < p < 1, 0 C a < b < ж , w1(t) = (ln (b))p 1, 0 < t < 1, and f G Q-1. Then the inequalty lH2f ^Lp(0,1)

C (Hhp) P I f " L p^ >.

(2.4)

holds, where (y—p) p is the sharp constant.

  • < The proof follows in view of Corollary 1 (d) and the rest is similar to that of Theorem 3. >

Now we lead with the Hardy operator in the grand Lebesgue spaces.

By Definition 1, we have 0 < p C 1 and 0 < E <  2 , thus 0 < p E <  1, then one can apply Corollary 1 by replacing p by p e . Consequently we get the following statements.

Corollary 2. Let 0 < p <  1 , 0 e <  2 .

  • (a)    If в >  1, f G Q e and 0 C a < b C to , then

    / b \p—                        / b

I I f (У) dy I C (p - Е)(в + 1)1-p+e I I y     fp-£(y) dy I .(2.5)

  • (b)    If в >  1, f G Q e , then

( jf(y)dy)    C (p — Е)(в + 1)1-p+'j [y-e (xe+1 — ye+1)]’’-'-1 fp-'(y)dy.(2.6)

The constants in these inequalities are the best possible.

Theorem 5. Let 0 < p <  1 , 0 < E <  p , f G A p and f G Q e , в ^ 0 . Then

IH1f lLp)(0,1) C C If H4 .(2.7)

If C >  0 is the sharp constant in (2.7) , then

(j—p p C C C (в + 1)p-1 (^) p.(2.8)

( 1                     p E

E [ I H 1 f ( t ) | p - e dt     = sup

0 p

0                      /              2

E /

x p-ε

x \ p

У f (t) dt I    dx

1 p-ε

.

By using Corollary 2 (a) with b = x, we obtain

\ H 1 f \\lp )(0,1) sup (p - £ ) p-E ( в +1) -pp— p) ’      0 p

= sup (p £) p - E

0

1 - p+E (в + 1) p - E

-

= sup (p £) p-E

0<£<

1-p+E / (e + 1) 2    (

sup 0 p

(

p - £

1 + £ -

x

1 p-ε

tp £ 1 f p 5 (t)x (0 , 1) (t) dt dx

£ J t p - 5 -1 f p - 5 (t)

1+ £ - p

) p - E           1 - p+E

(в + h

1—p+E

< sup (в + 1) P e sup

0 —              0

p

\ 1 +

- £

p-ε

t 1+ £ - p) t p

1 p-ε p-£-1 — 1) fp-£(t) dt I sup 0

1 p-ε

(tp-£-11) fp-5(t) dt I

t

x£ pdx di

1 p-ε

1 p-ε

5-1fp-£(t) dt

.

Let 0 < £ < p, thus 1 p + £ < 1 p + p = 1

p, therefore 1 p+e21. 2,               p-5 p

Since the function £ H l(£ = (i+--p)p-Eis decreasing on interval (0, 2), then we obtain

IH1f \\lP)(0,1) (в + 1) p

1 fe)p Ifu-

One can deduce that

C<(в+1) p-1(1p)p

On the other hand, let us proved the left hand side of (2.8).

Let f (x) = в + 1, thus and

sup £p-E + 1)

0

i

< sup £p-E 0

sup 0p

(

p-£

£ - p + 1

p-£

If Iap = 1(в + 1)Ia = sup p             p   0<< —

. p-e-1

(x;

p-ε

=

p-ε

1) (в + 1)p-5dx

sup £p-E + 1)

0

)p1(в+1)=

\H1f\lp)(0,1) = |н1(в + 1)|p) = 0<upp

£ /

xp

£ - p + 1

p-£

^ p~E

sup £p-E 2^"^^ (в + 1),

0p

x

p 5

p-ε

+ 1)dt

dx

then by (2.7)

^H1f HLp)(0,l) "    IlflU)

sup Ep e + 1)

■te:)’■

0<-< 2

~"2

sup E ~ C-p^ p + 1)

0<-<2     V 7

The proof is complete. >

Remark 4. If в ■ 0 in (2.8), we have Theorem 3 of [7].

Theorem 6. Let 0 < p < 1, 0 e< |, w(t)§1 (1~вв:Е-1+^ dy, 0 < У < 1, and f E Qв, в ^ 0. Then the inequality

IHlf «L„(0J) C Ilf Ik,,,. (0,1) .                                (2.9)

holds, where 1

»fk, ..«w ■   ■■2(ej (j(1 yXX-1 dy) fp-'(t)dt)   

If C > 0 is the sharp constant in (2.9), then

(2) p « C « ((в + 1)1-2p)p ■                          (2.10)

* IHlf»Lp,(0,1)

■ sup

0<-< 2

|Hif ■ ' dt

p-ε

■ sup

0<-< p

- 1         / x         \ p-- -

EI xP (If (t) dt 00

p-ε

According to Corollary 2 (b) and the Fubini theorem, we have

IH1f l|Lp)(0.1) supp

0<-< p

1x

E / x((p _ Е)(в + 1)1-P+-/

xe+1

^^^^^v

te+\) r-11

X fP -(t)X(0,1)(t) dt

dx

■ sup ((p - Е)(в + 1)1-p+-) p-e

0<-< p

E У f P--(t)t-e(p---1)

-

1 p-ε

Let x ■ -, then y,

E I f p--(t)t-e(p---1)

— te+1)      x- p dx | dt e+1

E j fP--(t)t-e(p---1)

(/(0

te+1

dt

so

tJf p-'(t)t-e(p-'-1)t(e+1)(p-'

-1)t'-p+1(/ ((1)e+1-1) p' 11)'-p( 7) dyh

1 t у f p-'(t) . 0

t / f p-'(t)

1 p-ε

1 (1 - ув+1)р-^-1 \ J у(в+1)(р-'-1)+'-р+2 dy I t

} (1 - ув+np--1  \ dy dt

J    ув(р'1)+1     y I

t

IIH1fIlLp)(0,1) sup ((P - t)(в + 1)1 p+') pE o<'< 2

  • <    pp ((в + 1)1-2) p sup

v            7 o<'<2

In the right hand side of (2.9), it’s obvious that y G]0,1[; (1 - ye+1)1+' p ^ (1 - y)1+'-p, therefore

1 p-ε

p-ε

^ Ilf^.w(0,1) ,

(1 - ye+1)p-'-1 ye(p' —1) + 1

1 p- dy dt

(1 - ye+1)p-'-1 ув(р-'-1) + 1    y

1p1

Cpp ((в + 1)1-2) p .

Since for all

1                                а                                а

/ (1 - ув+1)1+'-р dy=aim / (1 - ув+1)1+'-р dy ca™ / (1 - y)1+'-pdy.

By putting f (t) = в + 1 and taking in account p^+1у+у < 1, we get

sup

0<'< 2

1 - ye+1

= (в + 1) sup tP

0<'< 2

1 - ye+1

< (в + 1) sup t p

0<'< 2

i

(1 - y)p-'-1dy

1 p-ε

1    / 1                 \

= (в + 1) sup tp^ ( — ) p I Л1 - t)p-'dt I 0<'<p     p--1/                    I

  • <    (в + 1) sup t ~ sup            (------< (в + 1)

0<'<2    0<'<2 \p - t /    p-- t + 1/

sup tp-e         .

p

0<'< 2

On the other hand

HH1f^Lp) (0,1)

= 1Н1(в + 1)1^ (0,1)

by (2.9), we conclude that

(в + 1) sup EP- < C(в + 1) sup EP-

0<£< 2

0<£< 2

thus C ^ (2)p. The proof is complete. >

Remark 5. If в = 0 in (2.10), we have Theorem 4 of [7].

A similar results hold for p = 1.

Corollary 3. Let f G Li)(0,1), f G Qв, в ^ 0. Then there exists a constant C > 0, such that

(1 / 1

e/(/

0 \t

(1 - ye+1)

y-Д5+1

5 I

- dy \ f1-5(t) dt

1 1-ε

.

(2.11)

If C is the best constant in (2.11), then

  • 4 C C C + 1)2.

    (2.12)


Remark 6. If в = 0 in (2.12), we find Theorem 6 of [7].

Список литературы Hardy type inequalities in classical and grand Lebesgue spaces lp), 0

  • Iwaniec, T. and Sbordone, C. On the Integrability of the Jacobian Under Minimal Hypotheses, Archive for Rational Mechanics and Analysis, Springer-Verlag, 1992, vol. 119, no. 2, pp. 129-143.
  • Capone, C. and Fiorenza, A. On small Lebesgue spaces, Journal of Function Spaces, 2005, vol. 3, no. 1, pp. 73-89. DOI: 10.1155/2005/192538
  • Fiorenza, A. and Karadzhov, G. E. Grand and Small Lebesgue Spaces and Their Analogs, Zeitschrift fur Analysis und ihre Anwendungen, 2004, vol. 23, no. 4, pp. 657-681. DOI: 10.4171/ZAA/1215
  • Samko, S. G. and Umarkhadzhiev, S. M. Local Grand Lebesgue Spaces, Vladikavkaz Math. J., 2021, vol. 23, no. 4, pp. 96-108. DOI: 10.46698/e4624-8934-5248-n
  • Umarkhadzhiev, S. M. Generalization of the Notion of Grand Lebesgue Space, Russian Mathematics, 2014, vol. 58, no. 4, pp. 35-43. DOI: 10.3103/S1066369X14040057
  • Umarkhadzhiev, S. M. One-Dimensional and Multidimensional Hardy Operators in Grand Lebesgue Spaces, Azerbaijan Journal of Mathematics, 2017, vol. 7, no. 2, pp. 132-152.
  • Bandaliev, A. R. and Safarova, K. H. On Hardy Type Inequalities in Grand Lebesgue Spaces Lp) for 0.
  • Bergh, J., Burenkov, V. and Persson, L.-E. Best Constants in Reversed Hardy's Inequalities for Quasimonotone Functions, Acta Scientiarum Mathematicarum, Szeged, 1994, vol. 59, no. 1-2, pp. 221-239.
Еще
Статья научная