Hierarchical model of architecture of supercomputer systems for comparison and ranking

Бесплатный доступ

The task of comparing the capabilities of computing systems with each other and forming various ratings has many possible goals. Here, there is the identification of trends, the promotion of proven general-purpose architectures, and the demonstration of superiority in a certain class of tasks, etc. It is, of course, not enough to describe the achieved performance for all these purposes, various rankings and comparisons use different levels of abstraction and generalization up to that level, which would allow to associate the identified performance indicators with certain features of the system. In practice, descriptions of the architectural peculiarities of systems in ratings are rather scarce, and the authors of the work solve the problem of development a formal description of computer systems of a relatively high level, which, at the same time, would allow to increase the required level of detail, corresponding to the goals of applied research. Such a hierarchical system description model has been proposed and tested on well-known systems from the Top50 and Top500 lists.

Еще

Model of a supercomputer system, description of the architecture of supercomputer systems, comparison of performance of computing systems, performance ratings

Короткий адрес: https://sciup.org/147239437

IDR: 147239437   |   DOI: 10.14529/cmse220401

Список литературы Hierarchical model of architecture of supercomputer systems for comparison and ranking

  • Nikitenko D.A., Zheltkov A.A. The Top50 list vivification in the evolution of HPC rankings. Parallel Computational Technologies. Vol. 753 / ed. by L. Sokolinsky, M. Zymbler. Cham: Springer, 2017. P. 14-26. Communications in Computer and Information Science. DOI: 10.1007/978-3-319-67035-5_2.
  • Antonov A., Dongarra J., Voevodin V. AlgoWiki Project as an Extension of the Top500 Methodology. Supercomputing Frontiers and Innovations. 2018. Vol. 5, no. 1. P. 4-10. DOI: 10.14529/jsfi180101.
  • Antonov A.S., Nikitenko D.A., Voevodin V.V. Algo500 - A New Approach to the Joint Analysis of Algorithms and Computers. Lobachevskii J Math. 2020. Vol. 41, no. 6. P. 14351443. DOI: 10.1134/S1995080220080041.
  • Antonov A.S., Maier R.V. Development and Implementation of the Algo500 Scalable Digital Platform Architecture. Lobachevskii J Math. 2022. Vol. 43, no. 7. P. 837-847. DOI: 10.1134/S1995080222070058.
  • Kostenetskii P.S., Sokolinsky L.B. Simulation of Hierarchical Multiprocessor Database Systems. Programming and Computer Software. 2013. Vol. 39, no. 1. P. 10-24. DOI: 10.1134/S0361768813010040.
  • Zhang Y., Chen G., Sun G., Miao Q. Models of Parallel Computation: A Survey and Classification, Frontiers Comput. Sci. China. 2007. Vol. 1, no. 2. P. 156-165. DOI: 10.1007/s11704-007-0016-1.
  • Official Frontier website at ORNL. URL: https://www.olcf.ornl.gov/frontier (accessed: 07.11.2022).
  • Frontier system at Top500 rating. URL: https://www.top500.org/system/180047 (accessed: 07.11.2022).
  • Frontier system User Guide. URL: https://docs.olcf.ornl.gov/systems/frontier_user_ guide.html (accessed: 07.11.2022).
  • Official Summit website at ORNL. URL: https://www.olcf.ornl.gov/frontier (accessed: 07.11.2022).
  • Summit system at Top500 rating. URL: https://www.top500.org/system/179397 (accessed: 07.11.2022).
  • Summit system User Guide. URL: https://docs.olcf.ornl.gov/systems/frontier_ user_guide.html (accessed: 07.11.2022).
  • Official Selene website. URL: https://www.nvidia.com/en-us/on-demand/session/ gtcspring21-s31700/ (accessed: 07.11.2022).
  • Selene system at Top500 rating. URL: https://www.top500.org/system/179842/ (accessed: 07.11.2022).
  • NVIDIA SuperPOD. URL: https://www.nvidia.com/en-us/data-center/dgx-superpod/ (accessed: 07.11.2022).
  • Voevodin V.V., Chulkevich R.A., Kostenetskiy P.S., et al. Administration, Monitoring and Analysis of Supercomputers in Russia: a Survey of 10 HPC Centers. Supercomputing Frontiers and Innovations. 2021. Vol. 8, no. 3. P. 82-103. DOI: 10.14529/jsfi210305.
  • Voevodin V.V., Antonov A.S., Nikitenko D.A., et al. Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community. Supercomputing Frontiers and Innovations. 2019. Vol. 6, no. 2. P. 4-11. DOI: 10.14529/jsfi190201.
  • Lomonosov-2 User’s Guide. URL: https://parallel.ru/cluster/lomonosov2.html (accessed: 07.11.2022). (in Russian)
  • Voevodin V., Antonov A., Nikitenko D., et al. Lomonosov-2: Petascale supercomputing at Lomonosov Moscow State University. Contemporary High Performance Computing: From Petascale toward Exascale. Vol. 3. Boca Raton, United States: CRC Press, 2019. P. 305-330. DOI: 10.1201/9781351036863-12.
  • Lomonosov-2 system at Top50 rating. URL: http://top50.supercomputers.ru/systems/ 4568 (accessed: 07.11.2022). (in Russian)
  • Lomonosov-2 system at Top500 rating. URL: https://www.top500.org/system/178444/ (accessed: 07.11.2022).
  • HSE cHARISMa system at Top50 rating. URL: http://top50.supercomputers.ru/ systems/6294 (accessed: 07.11.2022). (in Russian)
  • Kostenetskiy P.S., Chulkevich R.A., Kozyrev V.I. HPC Resources of the Higher School of Economics. Journal of Physics: Conference Series. 2021. Vol. 1740, no. 1. P. 012050. DOI: 10.1088/1742-6596/1740/1/012050.
Еще
Статья научная