Identification of the boundary condition in the diffusion model of the hydrodynamic flow in a chemical reactor

Бесплатный доступ

The motion of a hydrodynamic flow in a chemical reactor described by a one-dimensional one-parameter diffusion model is considered. Within the framework of this model, the task is set to identify the boundary condition at the reactor outlet containing an unknown concentration of the reagent under study leaving the reactor in a stream. In this case, the law of change in the concentration of the reagent over time at the reactor inlet is additionally set. After the introduction of dimensionless variables, a discrete analogue of the transformed inverse problem in the form of a system of linear algebraic equations is constructed by the method of difference approximation. The discrete analogue of the additional condition is written as a functional and the solution of a system of linear algebraic equations is presented as a variational problem with local regularization. A special representation is proposed for the numerical solution of the constructed variational problem. As a result, the system of linear equations for each discrete value of a dimensionless time splits into two independent linear subsystems, each of which is solved independently of each other. As a result of minimizing the functional, an explicit formula was obtained for determining the approximate concentration of the reagent under study in the flow leaving the reactor at each discrete value of the dimensionless time. The proposed computational algorithm has been tested on the data of a model chemical reactor.

Еще

Chemical reactor, one-parameter diffusion model, peclet parameter, boundary inverse problem, local regularization method

Короткий адрес: https://sciup.org/147244580

IDR: 147244580   |   DOI: 10.14529/mmp240201

Список литературы Identification of the boundary condition in the diffusion model of the hydrodynamic flow in a chemical reactor

  • Касаткин, А.Г. Основные процессы и аппараты химической технологии / А.Г. Касаткин. - М.: Альянс, 2014.
  • Комиссаров, Ю.А. Процессы и аппараты химической технологии / Ю.А. Комиссаров, Л.С. Гордеев, Д.П. Вент. - М.: Химия, 2011.
  • Кутепов, А.М. Общая химическая технология / А.М. Кутепов, Т.Н. Бондарева, М.Б. Бе-ренгартен. - М.: Академкнига, 2007.
  • Гумеров, А.М. Математическое моделирование химико-технологических процессов / А.М. Гумеров. - М.: Издательство Лань, 2014.
  • Кафаров, В.В. Математическое моделирование основных процессов химических производств / В.В. Кафаров, М.Б. Глебов. - М.: Высшая школа, 1991.
  • Ушева, Н.В. Математическое моделирование химико-технологических процессов / Н.В. Ушева, О.Е. Мойзес, О.Е. Митянина, Е.А. Кузьменко. - Томск: Издательство Томского политехнического университета, 2014.
  • Закгейм, А.Ю. Общая химическая технология: введение в моделирование химико-технологических процессов / А.Ю. Закгейм. - М.: Логос, 2009.
  • Danckwerts, P.V. Gas-Liquid Reactions / P.V. Danckwerts. - New York: McGraw-Hill Book Corporation, 1970.
  • Alifanov, O.M. Inverse Heat Transfer Problems / O.M. Alifanov. - Berlin: Springer, 2011.
  • Kabanikhin, S.I. Inverse and Ill-Posed Problems / S.I. Kabanikhin. - Berlin: Walter de Gruyter, 2011.
  • Samarskii, A.A. Numerical Methods for Solving Inverse Problems of Mathematical Physics / A.A. Samarskii, P.N. Vabishchevich. - Berlin: Walter De Gruyter, 2008.
  • Hasanov, A.H. Introduction to Inverse Problems for Differential Equations / A.H. Hasanov, V.G. Romanov. - Berlin: Springer, 2021.
  • Костин, А.Б. О некоторых задачах восстановления граничного условия для параболического уравнения / А.Б. Костин, А.И. Прилепко // Дифференциальные уравнения. -1996. - Т. 32, № 1. - С. 107-116.
  • Кожанов, А.И. Обратные задачи определения граничных режимов для некоторых уравнений соболевского типа / А.И. Кожанов // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. - 2016. - Т. 9, № 2. - С. 37-45.
  • Prilepko, A.I. Methods for Solving Inverse Problems in Mathematical Physics / A.I. Prilepko, D.G. Orlovsky, I.A. Vasin. - New York: Marcel Dekker, 2000.
  • Gamzaev, Kh.M. Inverse Problem of Pipeline Transport of Weakly-Compressible Fluids / Kh.M. Gamzaev // Journal of Engineering Physics and Thermophysics. - 2020. - V. 93, № 6. - P. 1567-1573.
  • Gamzaev, Kh.M. Identification of the Boundary Mode in One Thermal Problem Based on the Single-Phase Stefan Model / Kh.M. Gamzaev // Cybernetics and Systems Analysis. -2023. - V. 59, № 2. - P. 266-273.
  • Vasilev, V.I. Numerical Method for Solving Boundary Inverse Problem for One-Dimensional Parabolic Equation / V.I. Vasilev, Su Ling-De // Mathematical Notes of NEFU. - 2017. -V. 24, № 2. - P. 107-116.
  • Yaparova, N.M. Numerical Methods for Solving a Boundary Value Inverse Heat Conduction Problem / N.M. Yaparova // Inverse Problems in Science and Engineering. - 2014. - V. 22, № 5. - P. 832-847.
Еще
Статья научная