Иммунобиологические и молекулярно-генетические свойства негемадсорбирующих штаммов вируса африканской чумы свиней (обзор)

Автор: Крутько С.А., Намсрайн С.Г., Середа А.Д.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 2 т.57, 2022 года.

Бесплатный доступ

Вирус африканской чумы свиней (АЧС, African swine fever virus , Asfivirus , Asfarviridae ) представляет собой наиболее серьезную проблему для отрасли свиноводства во всем мире. В представленном обзоре проанализированы результаты исследований негемадсорбирующих штаммов вируса АЧС, рассмотрены особенности их иммунобиологических и молекулярно-генетических свойств, применение в фундаментальных и прикладных научных исследованиях. Согласно опубликованным данным, большинство выделенных в природе или полученных в лабораторных условиях негемадсорбирующих штаммов вируса АЧС слабовирулентны или авирулентны и обладают свойством формировать иммунную защиту от последующего заражения свиней гомологичными вирулентными гемадсорбирующими изолятами или штаммами (J.D. Vigário с соавт., 1970). На Африканском континенте авирулентные негемадсорбирующие штаммы вируса АЧС, как правило, выделяли от персистентно инфицированных бородавочников ( Phacochoerus spp . ), кустарниковых свиней ( Poto-mochorus porcus ) и мягких клещей Оrnithodoros moubata (A. Pini, 1976; G.R. Thomson с соавт., 1979), в Европе (Португалия, Испания, Латвия) и Азии (Китай) - от персистентно инфицированных домашних свиней ( Sus scrofa domesticus ), диких кабанов ( Sus scrofa ) и от клещей Оrnithodoros erraticus (marocanus ) (F.S. Boinas с соавт., 2004; C. Gallardo с соавт., 2019; E. Sun с соавт., 2021). Негемадсорбирующие штаммы применяются в исследованиях механизмов иммунной защиты от АЧС. В экспериментах со штаммом OURT88/3 была установлена важная роль CD8+ Т-клеток в иммунной защите от АЧС. Индуцированная штаммом OURT88/3 перекрестная защита от заражения вирулентными изолятами неродственных генотипов коррелировала со способностью этих изолятов специфически стимулировать продукцию IFNγ лимфоцитами иммунизированных свиней (C.C. Abrams с соавт., 2013). В экспериментах с негемадсорбирующим штаммом NH/P68 было продемонстрировано, что высокое содержание специфических антител к вирусу АЧС характерно для хронической формы болезни, в то время как низкое количество антител отмечено у свиней с бессимптомной формой инфекции после интраназальной и внутримышечной иммунизации (A. Leitão с соавт., 2001; C. Gallardo с соавт., 2019). Низкую патогенность негемадсорбирующих изолятов связывают с потерей факторов вирулентности из-за больших делеций близко к левому концу генома или меньшими делециями и заменами в генах, кодирующих факторы вирулентности в других участках генома (F.S. Boinas с соавт., 2004). Утрату гемадсорбирующих свойств вируса АЧС связывают с делециями и/или сдвигом рамки считывания в гене EP402R (R.J. Rowlands с соавт., 2009; R. Portugal с соавт., 2015; K.A. Mima с соавт., 2015). Проведены работы по уменьшению побочных клинических реакций у свиней, инокулированных делеционными мутантами штаммов OURT88/3 и NH/P68 вируса АЧС (M.L. Nogal с соавт., 2001; C. Hurtado с соавт., 2004; A.G. Granja с соавт., 2009). Природно аттенуированные негемадсорбирующие штаммы вируса АЧС применяют в исследованиях по созданию кандидатных живых вакцин. С их помощью удалось достичь до 100 % защиты от гомологичных вирулентных изолятов и штаммов вируса АЧС у домашних свиней (K. King с соавт., 2011; P.J. Sánchez-Cordón с соавт., 2017; C. Gallardo с соавт., 2018; C. Gallardo с соавт., 2019; P.J. Sanchez-Cordon с соавт., 2020) и кабанов (J.A. Barasona с соавт., 2019).

Еще

Африканская чума свиней, негемадсорбирующие изоляты, негемадсорбирующие штаммы, кандидатные вакцины

Короткий адрес: https://sciup.org/142235667

IDR: 142235667   |   DOI: 10.15389/agrobiology.2022.2.207rus

Список литературы Иммунобиологические и молекулярно-генетические свойства негемадсорбирующих штаммов вируса африканской чумы свиней (обзор)

  • Arias M., De la Torre A., Dixon L., Gallardo C., Jori F., Laddomada A., Martins C., Parkhouse R.M., Revilla Y., Rodriguez F., Sanchez-Vizcaino J.M. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines, 2017, 5(4): 35 (doi: 10.3390/vaccines5040035).
  • Forman A.J., Wardley R.C., Wilkinson P.J. The immunological response of pigs and guinea pigs to antigens of African swine fever virus. Archives of Virology, 1982, 74(2-3): 91-100 (doi: 10.1007/BF01314703).
  • Stone S.S., Hess W.R. Antibody response to inactivated preparations of African swine fever virus in pigs. American Journal of Veterinary Research, 1967, 28(123): 475-481.
  • Rock D.L. Challenges for African swine fever vaccine development—«... perhaps the end of the beginning». Veterinary Microbiology, 2017, 206: 52-58 (doi: 10.1016/j.vetmic.2016.10.003).
  • Blome S., Gabriel C., Beer M. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine, 2014, 32(31): 3879-3882 (doi: 10.1016/j.vaccine.2014.05.051).
  • OIE (World Organization for Animal Health). Animal diseases. Режим доступа: https://www.oie.int/en/what-we-do/animal-health-and-welfare/animal-diseases/. Без даты.
  • Alonso C., Borca M., Dixon L., Revilla Y., Rodriguez F., Escribano J.M. Ictv report consortium. ICTV virus taxonomy profile: Asfarviridae. Journal of General Virology, 2018, 99(5): 613-614 (doi: 10.1099/jgv.0.001049).
  • Galindo I., Alonso C. African swine fever virus: a review. Viruses, 2017, 9(5): 103 (doi: 10.3390/v9050103).
  • Sánchez-Vizcaíno J.M., Mur L., Martínez-López B. African swine fever: an epidemiological update. Transboundary and Emerging Disease, 2012, 59(S1): 27-35 (doi: 10.1111/j.1865-1682.2011.01293.x).
  • Global African Swine Fever Research Alliance (GARA). African Swine Fever. Gap Analysis Report. 2018. Режим доступа: https://go.usa.gov/xPfWr. Без даты.
  • Sereda A.D., Balyshev V.M., Kazakova A.S., Imatdinov A.R., Kolbasov D.V. Protective properties of attenuated strains of African swine fever virus belonging to seroimmunotypes I-VIII. Pathogens, 2020, 9(4): 274 (doi: 10.3390/pathogens9040274).
  • Malogolovkin A., Kolbasov D. Genetic and antigenic diversity of African swine fever virus. Virus Research, 2019, 271: 197673 (doi: 10.1016/j.virusres.2019.197673).
  • Sereda A.D., Imatdinov A.R., Makarov V.V. The haemadsorbation at African swine fever (review). Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2016, 51(6): 763-774 (doi: 10.15389/agrobiology.2016.6.763eng).
  • Quembo C.J., Jori F., Vosloo W., Heath L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transboundary and Emerging Disease, 2018, 65(2): 420-431 (doi: 10.1111/tbed.12700).
  • Achenbach J.E., Gallardo C., Nieto-Pelegrín E., Rivera-Arroyo B., Degefa-Negi T., Arias M., Jenberie S., Mulisa D.D., Gizaw D., Gelaye E., Chibssa T.R., Belaye A., Loitsch A., Forsa M., Yami M., Diallo A., Soler A., Lamien C.E., Sánchez-Vizcaíno J.M. Identification of a new genotype of African swine fever virus in domestic pigs from Ethiopia. Transboundary and Emerging Disease, 2017, 64(5): 1393-1404 (doi: 10.1111/tbed.12511).
  • Muangkram Y., Sukmak M., Wajjwalku W. Phylogeographic analysis of African swine fever virus based on the p72 gene sequence. Genetics and Molecular Research, 2015, 14(2): 4566-4574 (doi: 10.4238/2015.May.4.15).
  • Gao L., Sun X., Yang H., Xu Q., Li J., Kang J., Liu P., Zhang Y., Wang Y., Huang B. Epidemic situation and control measures of African Swine Fever Outbreaks in China 2018-2020. Transboundary and Emerging Disease, 2021, 68(5): 2676-2686 (doi: 10.1111/tbed.13968).
  • Revilla Y., Pérez-Núñez D., Richt J.A. Chapter Three - African swine fever virus biology and vaccine approaches. Advances in Virus Research, 2018, 100: 41-74 (doi: 10.1016/bs.aivir.2017.10.002).
  • Cisek AA., Dąbrowska I., Gregorczyk K.P., Wyżewski Z. African swine fever virus: a new old enemy of Europe. Annals of Parasitology, 2016, 62(3): 161-167 (doi: 10.17420/ap6203.49).
  • Sánchez-Vizcaíno J.M., Mur L., Gomez-Villamandos J.C., Carrasco L. An update on the epidemiology and pathology of African swine fever. Journal of Comparative Pathology, 2015, 152(1): 9-21 (doi: 10.1016/j.jcpa.2014.09.003).
  • Rowlands R.J., Michaud V., Heath L., Hutchings G., Oura C., Vosloo W., Dwarka R., Onashvili T., Albina E., Dixon L.K. African swine fever virus isolate, Georgia, 2007. Emerging Infectious Diseases, 2008, 14(12): 1870-1874 (doi: 10.3201/eid1412.080591).
  • Sánchez-Vizcaíno J.M., Mur L., Martínez-Lópeza B. African swine fever (ASF): five years around Europe. Veterinary Microbiology, 2013, 165(1-2): 45-50 (doi: 10.1016/J.VETMIC.2012.11.030).
  • Beltran-Alcrudo D., Lubroth J., Depner K., Rocque, La S.D., Beltran-Alcrudo D., Lubroth J., De La Rocque S. African swine fever in the Caucasus. FAO, EmpresWatch, 2008.
  • Gogin A., Gerasimov V., Malogolovkin A., Kolbasov D. African swine fever in the North Caucasus region and the Russian Federation in years 2007-2012. Virus Research, 2013, 173(1): 198-203 (doi: 10.1016/j.virusres.2012.12.007).
  • Korennoy F.I., Gulenkin V.M., Gogin A.E., Vergne T., Karaulov A.K. Estimating the basic reproductive number for African swine fever using the Ukrainian historical epidemic of 1977. Transboundary and Emerging Disease, 2017, 64(6): 1858-1866 (doi: 10.1111/tbed.12583).
  • Malogolovkin A., Yelsukova A., Gallardo C., Tsybanov S., Kolbasov D. Molecular characterization of African swine fever virus isolates originating from outbreaks in the Russian Federation between 2007 and 2011. Veterinary Microbiology, 2012, 58(3-4): 415-9 (doi: 10.1016/j.vetmic.2012.03.002).
  • Zhao D., Liu R., Zhang X., Li F., Wang J., Zhang J., Liu X., Wang L., Zhang J., Wu X., Guan Y., Chen W., Wang X., He X., Bu Z. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerging Microbes and Infections, 2019, 8(1): 438-447 (doi: 10.1080/22221751.2019.1590128).
  • Tran H.T.T., Truong A.D., Dang A.K., Ly D.V., Nguyen C.T., Chu N.T., Hoang T.V., Nguyen H.T., Dang H.V. Circulation of two different variants of intergenic region (IGR) located between the I73R and I329L genes of African swine fever virus strains in Vietnam. Transboundary and Emerging Disease, 2021, 68(5): 2693-2695 (doi: 10.1111/tbed.13996).
  • Wen X., He X., Zhang X., Zhang X., Liu L., Guan Y., Zhang Y., Bu Z. Genome sequences derived from pig and dried blood pig feed samples provide important insights into the transmission of African swine fever virus in China in 2018. Emerging Microbes and Infections, 2019, 8(1): 303-306 (doi: 10.1080/22221751.2019.1565915).
  • Sun E., Zhang Z., Wang Z., He X., Zhang X., Wang L., Wang W., Huang L., Xi F., Huangfu H., Tsegay G., Huo H., Sun J., Tian Z., Xia W., Yu X., Li F., Liu R., Guan Y., Zhao D., Bu Z. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Sci. China Life Sci., 2021, 64(5): 752-765 (doi: 10.1007/s11427-021-1904-4).
  • Sun E., Huang L., Zhang X., Zhang J., Shen D., Zhang Z., Wang Z., Huo H., Wang W., Huangfu H., Wang W., Li F., Liu R., Sun J., Tian Z., Xia W., Guan Y., He X., Zhu Y., Zhao D., Bu Z. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerging Microbes and Infections, 2021, 10(1): 1-30 (doi: 10.1080/22221751.2021.1999779).
  • Coggins L. Segregation of a nonhaemadsorbing African swine fever virus in tissue culture. Cornell Veterinarian, 1968, 58: 12-20.
  • Jori F., Bastos A.D. Role of wild suids in the epidemiology of African swine fever. EcoHealth, 2009, 6(2): 296-310 (doi: 10.1007/s10393-009-0248-7).
  • Ravaomanana J., Michaud V., Jori F., Andriatsimahavandy A., Roger F., Albina E., Vial L. First detection of African Swine Fever Virus in Ornithodoros porcinus in Madagascar and new insights into tick distribution and taxonomy. Parasites Vectors,2010, 3: 115 (doi: 10.1186/1756-3305-3-115).
  • Pan I.C., Hess W.R. Diversity of African swine fever virus. American Journal of Veterinary Research, 1985, 46(2): 314-320.
  • Pan I.C. African swine fever virus: generation of subpopulations with altered immunogenicity and virulence following passage in cell cultures. The Journal of Veterinary Medical Science, 1992, 54(1): 43-52 (doi: 10.1292/jvms.54.43).
  • Vigário J.D., Terrinha A.M., Bastos A.L., Moura-Nunes J.F., Marques D., Silva J.F. Serological behaviour of isolated African swine fever virus. Brief report. Archiv für die Gesamte Virusforschung, 1970, 31(3): 387-389 (doi: 10.1007/BF01253773).
  • Pini A. Isolation and segregation of non-haemadsorbing strains of African swine fever virus. Veterinary Record, 1976, 99(24): 479-480 (doi: 10.1136/vr.99.24.479).
  • Pini A., Wagenaar G. Isolation of a non-haemadsorbing strain of African swine fever (ASF) virus from a natural outbreak of the disease. Veterinary Record, 1974, 94(1): 2 (doi: 10.1136/vr.94.1.2).
  • Thomson G.R., Gainaru M.D., van Dellen A. F. African swine fever: pathogenicity and immunogenicity of two non-haemadsorbing viruses. The Onderstepoort Journal of Veterinary Research, 1979, 46(3): 149-154.
  • Commission of the European Communities. Laboratory manual for research on classical and African swine fever. The Commission, Luxembourg, 1976: 111-112.
  • Makarov V., Nedosekov V., Sereda A., Matvienko N. Immunological conception of African swine fever. Zoology and Ecology, 2016, 26(3): 236-243 (doi: 10.1080/21658005.2016.1182822).
  • Louzã A.C., Boinas F.S., Caiado J.M., Vigario J.D., Hess W.R. Role des vecteurs et des reservoirs animaux dans la persistence de la peste porcine africaine, au Portugal. Epidemiologie et Sante Animale, 1989, 15: 89-102 (in French).
  • Vigário J.D., Terrinha A.M., Moura Nunes J.F. Antigenic relationships among strains of African swine fever virus. Archiv für die Gesamte Virusforschung, 1974, 45(3): 272-277 (doi: 10.1007/BF01249690).
  • Manso-Ribeiro J., Nunes-Petisca J.L., Lopez-Frazao F., Sobral M. Vaccination against ASF. Bull. Off. Int. Epiz., 1963, 60: 921-937.
  • Petuska N. Quelques aspects morphogenesis des suites de la vaccination contre la PPA (virose L) an Portugal. Bull. Off. Int. Epiz., 1965, 63: 199-237.
  • Sanchez Botija C., Ordaz A., Solana A., Gonzalvo F., Olias J. Carnero M.E. Peste Porcina Africana: observaciones sobre modificacion espontanea del virus de campo. An. Inst. Invest. Vet., 1977, 24: 7-17 (in Spanish).
  • Leitão A., Cartaxeiro C., Coelho R., Cruz B., Parkhouse R., Portugal F.C., Vigário J.D., Martins C. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. The Journal of General Virology, 2001, 82(3): 513-523 (doi: 10.1099/0022-1317-82-3-513).
  • Boinas F.S., Hutchings G.H., Dixon L.K., Wilkinson P.J. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. Journal of General Virology, 2004, 85(8): 2177-2187 (doi: 10.1099/vir.0.80058-0).
  • Rowlands R.J., Duarte M.M., Boinas F., Hutchings G., Dixon L.K. The CD2v protein enhances African swine fever virus replication in the tick vector, Ornithodoros erraticus. Virology, 2009, 393(2): 319-328 (doi: 10.1016/j.virol.2009.07.040).
  • Dixon L.K., Twigg S.R., Baylis S.A., Vydelingum S., Bristow C., Hammond J.M., Smith G.L. Nucleotide sequence of a 55 kbp region from the right end of the genome of a pathogenic African swine fever virus isolate (Malawi LIL20/1). The Journal of General Virology, 1994, 75(7): 1655-1684 (doi: 10.1099/0022-1317-75-7-1655).
  • Sumption K.J., Hutchings G.H., Wilkinson P.J., Dixon L.K. Variable regions on the genome of Malawi isolates of African swine fever virus. The Journal of General Virology, 1990, 71(10): 2331-2340 (doi: 10.1099/0022-1317-71-10-2331).
  • Yáñez R.J., Rodríguez J.M., Nogal M.L., Yuste L., Enríquez C., Rodriguez J.F., Viñuela E. Analysis of the complete nucleotide sequence of African swine fever virus. Virology, 1995, 208(1): 249-278 (doi: 10.1006/viro.1995.1149).
  • Sánchez-Cordón P.J., Chapman D., Jabbar T., Reis A.L., Goatley L., Netherton C.L., Taylor G., Montoya M., Dixon L. Different routes and doses influence protection in pigs immunised with the naturally attenuated African swine fever virus isolate OURT88/3. Antiviral Reserch, 2017, 138: 1-8 (doi: 10.1016/j.antiviral.2016.11.021).
  • Gallardo C., Nieto R., Soler A., Pelayo V., Fernández-Pinero J., Markowska-Daniel I., Pridotkas G., Nurmoja I., Granta R., Simón A., Pérez C., Martín E., Fernández-Pacheco P., Arias M. Assessment of African swine fever diagnostic techniques as a response to the epidemic outbreaks in eastern european union countries: How To Improve surveillance and control programs. Journal of Clinical Microbiology, 2015, 53(8): 2555-2565 (doi: 10.1128/JCM.00857-15).
  • Oura C., Denyer M.S., Takamatsu H., Parkhouse R. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. The Journal of General Virology, 2005, 86(9): 2445-2450 (doi: 10.1099/vir.0.81038-0).
  • King K., Chapman D., Argilaguet J.M., Fishbourne E., Hutet E., Cariolet R., Hutchings G., Oura C.A., Netherton C.L., Moffat K., Taylor G., Le Potier M.F., Dixon L.K., Takamatsu H.H. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine, 2011, 29(28): 4593-4600 (doi: 10.1016/j.vaccine.2011.04.052).
  • Рудобельский Э.В. Исследование иммунобиологических свойств культурального варианта цитолитического штамма МФ-79 вируса АЧС. Тез. докл. научной конференции ВНИИВВиМ, посвященной 70-летию Великого Октября. Покров, 1988: 80-81.
  • Gallardo C., Soler A., Rodze I., Nieto R., Cano-Gómez C., Fernandez-Pinero J., Arias M. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transboundary and Emerging Diseases, 2019, 66(3): 1399-1404 (doi: 10.1111/tbed.13132).
  • Detray D.E. Persistence of viremia and immunity in African swine fever. American Journal of Veterinary Research, 1957, 18(69): 811-816.
  • Malmquist W.A. Serologic and immunologic studies with African swine fever virus. American Journal of Veterinary Research, 1963, 24: 450-459.
  • Mebus C.A., Dardiri A.H. Western hemisphere isolates of African swine fever virus: asymptomatic carriers and resistance to challenge inoculation. American Journal of Veterinary Research, 1980, 41(11): 1867-1869.
  • Sereda A.D., Kazakova A.S., Imatdinov A.R., Kolbasov D.V. Humoral and cell immune mechanisms under African swine fever. Agricultural Biology, 2015, 50(6): 709-718 (doi: 10.15389/agrobiology.2015.6.709eng).
  • Wardley R.C., Norley S.G., Wilkinson P.J., Williams S. The role of antibody in protection against African swine fever virus. Veterinary Immunology and Immunopathology, 1985, 9(3): 201-212 (doi: 10.1016/0165-2427(85)90071-6).
  • Onisk D.V., Borca M.V., Kutish G., Kramer E., Irusta P., Rock D.L. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology, 1994, 198(1): 350-354 (doi: 10.1006/viro.1994.1040).
  • Ruiz-Gonzalvo F., Carnero M.E., Bruyel V. Immunological responses of pigs to partially attenuated African swine fever virus and their resistance to virulent homologous and heterologous viruses. Proc. EUR 8466 EN CEC/FAO Research Seminar «African Swine Fever», Sardinia, Italy /P.J. Wilkinson (ed.). Luxemburg, Belgium, Commission of the European Communities, 1981: 206-216.
  • Середа А.Д., Соловкин С.Л., Фугина Л.Г., Макаров В.В. Иммунные реакции на вирус африканской чумы свиней. Вопросы вирусологии, 1992, 37(3): 168-170.
  • Sánchez-Cordón P.J., Jabbar T., Chapman D., Dixon L.K., Montoya M. Absence of long-term protection in domestic pigs immunized with attenuated African swine fever virus isolate OURT88/3 or BeninΔMFG correlates with increased levels of regulatory T cells and IL-10. Journal of Virology, 2020, 94(14), e00350-20 (doi: 10.1128/jvi.00350-20).
  • Abrams C.C., Goatley L., Fishbourne E., Chapman D., Cooke L., Oura C.A., Netherton C.L., Takamatsu H.H., Dixon L.K. Deletion of virulence associated genes from attenuated African swine fever virus isolate OUR T88/3 decreases its ability to protect against challenge with virulent virus. Virology, 2013, 443(1): 99-105 (doi: 10.1016/j.virol.2013.04.028).
  • Norley S.G., Wardley R.C. Investigation of porcine natural-killer cell activity with reference to African swine-fever virus infection. Immunology, 1983, 49(4): 593-597.
  • Mendoza C., Videgain S.P., Alonso F. Inhibition of natural killer activity in porcine mononuclear cells by African swine fever virus. Research in Veterinary Science, 1991, 51(3): 317-321 (doi: 10.1016/0034-5288(91)90084-2).
  • Gallardo C., Sánchez E.G., Pérez-Núñez D., Nogal M., de León P., Carrascosa Á.L., Nieto R., Soler A., Arias M.L., Revilla Y. African swine fever virus (ASFV) protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses. Vaccine, 2018, 36(19): 2694-2704 (doi: 10.1016/j.vaccine.2018.03.040).
  • Granja A.G., Sánchez E.G., Sabina P., Fresno M., Revilla Y. African swine fever virus blocks the host cell antiviral inflammatory response through a direct inhibition of PKC-theta-mediated p300 transactivation. Journal of Virology, 2009, 83(2): 969-980 (doi: 10.1128/JVI.01663-08).
  • Nogal M.L., González de Buitrago G., Rodríguez C., Cubelos B., Carrascosa A.L., Salas M.L., Revilla Y. African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. Journal of Virology, 2001, 75(6): 2535-2543 (doi: 10.1128/JVI.75.6.2535-2543.2001).
  • Hurtado C., Granja A.G., Bustos M.J., Nogal M.L., González de Buitrago G., de Yébenes V.G., Salas M.L., Revilla Y., Carrascosa A.L. The C-type lectin homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression. Virology, 2004, 326(1): 160-170 (doi: 10.1016/j.virol.2004.05.019).
  • Revilla Y., Callejo M., Rodríguez J.M., Culebras E., Nogal M.L., Salas M.L., Viñuela E., Fresno M. Inhibition of nuclear factor kappaB activation by a virus-encoded IkappaB-like protein. The Journal of Biological Chemistry, 1998, 273(9): 5405-5411 (doi: 10.1074/jbc.273.9.5405).
  • Zsak L., Caler E., Lu Z., Kutish G.F., Neilan J.G., Rock D L. A nonessential African swine fever virus gene UK is a significant virulence determinant in domestic swine. Journal of Virology, 1998, 72(2): 1028-1035 (doi: 10.1128/JVI.72.2.1028-1035.1998).
  • Afonso C.L., Zsak L., Carrillo C., Borca M.V., Rock D.L. African swine fever virus NL gene is not required for virus virulence. The Journal of General Virology, 1998, 79(10): 2543-2547 (doi: 10.1099/0022-1317-79-10-2543).
  • Keßler C., Forth J.H., Keil G.M., Mettenleiter T.C., Blome S., Karger A. The intracellular proteome of African swine fever virus. Scientific Reports, 2018, 8(1): 14714 (doi: 10.1038/s41598-018-32985-z).
  • Zsak L., Lu Z., Burrage T.G., Neilan J.G., Kutish G.F., Moore D.M., Rock D.L. African swine fever virus multigene family 360 and 530 genes are novel macrophage host range determinants. Journal of Virology, 2001, 75(7): 3066-3076 (doi: 10.1128/JVI.75.7.3066-3076.2001).
  • Tulman E.R., Rock D.L. Novel virulence and host range genes of African swine fever virus. Current Opinion in Microbiology, 2001, 4(4): 456-461 (doi: 10.1016/s1369-5274(00)00235-6).
  • Bacciu D., Deligios M., Sanna G., Madrau M.P., Sanna M.L., Dei Giudici S., Oggiano A. Genomic analysis of Sardinian 26544/OG10 isolate of African swine fever virus. Virology Report, 2016, 6: 81-89 (doi: 10.1016/j.virep.2016.09.001).
  • Afonso C.L., Piccone M.E., Zaffuto K.M., Neilan J., Kutish G.F., Lu Z., Balinsky C.A., Gibb T.R., Bean T.J., Zsak L., Rock D.L. African swine fever virus multigene family 360 and 530 genes affect host interferon response. Journal of Virology, 2004, 78(4): 1858-1864 (doi: 10.1128/jvi.78.4.1858-1864.2004).
  • Burrage T.G., Lu Z., Neilan J.G., Rock D.L., Zsak L. African swine fever virus multigene family 360 genes affect virus replication and generalization of infection in Ornithodoros porcinus ticks. Journal of Virology, 2004, 78(5): 2445-2453 (doi: 10.1128/jvi.78.5.2445-2453.2004).
  • Neilan J.G., Borca M.V., Lu Z., Kutish G.F., Kleiboeker S.B., Carrillo C., Zsak L., Rock D. L. An African swine fever virus ORF with similarity to C-type lectins is non-essential for growth in swine macrophages in vitro and for virus virulence in domestic swine. The Journal of General Virology, 1999, 80(10): 2693-2697 (doi: 10.1099/0022-1317-80-10-2693).
  • Portugal R., Coelho J., Höper D., Little N.S., Smithson C., Upton C., Martins C., Leitão A., Keil G.M. Related strains of African swine fever virus with different virulence: genome comparison and analysis. The Journal of General Virology, 2015, 96(2): 408-419 (doi: 10.1099/vir.0.070508-0).
  • Rodríguez J.M., Yáñez R.J., Almazán F., Viñuela E., Rodriguez J.F. African swine fever virus encodes a CD2 homolog responsible for the adhesion of erythrocytes to infected cells. Journal of Virology, 1993, 67(9): 5312-5320 (doi: 10.1128/JVI.67.9.5312-5320.1993).
  • Borca M.V., Kutish G.F., Afonso C.L., Irusta P., Carrillo C., Brun A., Sussman M., Rock D. L. An African swine fever virus gene with similarity to the T-lymphocyte surface antigen CD2 mediates hemadsorption. Virology, 1994, 199(2): 463-468 (doi: 10.1006/viro.1994.1146).
  • Kay-Jackson P.C., Goatley L.C., Cox L., Miskin J.E., Parkhouse R., Wienands J., Dixon L.K. The CD2v protein of African swine fever virus interacts with the actin-binding adaptor protein SH3P7. The Journal of General Virology, 2004, 85(1): 119-130 (doi: 10.1099/vir.0.19435-0).
  • Goatley L.C., Dixon L.K. Processing and localization of the African swine fever virus CD2v transmembrane protein. Journal of Virology, 2011, 85(7): 3294-3305 (doi: 10.1128/JVI.01994-10).
  • Chapman D., Tcherepanov V., Upton C., Dixon L.K. Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. The Journal of General Virology, 2008, 89(2): 397-408 (doi: 10.1099/vir.0.83343-0).
  • Tulman E.R., Delhon G.A., Ku B.K., Rock D.L. African swine fever virus. In: Lesser known large dsDNA viruses. Current topics in microbiology and immunology, vol. 328/J.L. Van Etten (ed.). Springer, Berlin, Heidelberg, 2009: 43-87 (doi: 10.1007/978-3-540-68618-7_2).
  • Malogolovkin A., Burmakina G., Tulman E.R., Delhon G., Diel D.G., Salnikov N., Kutish G.F., Kolbasov D., Rock D.L. African swine fever virus CD2v and C-type lectin gene loci mediate serological specificity. The Journal of General Virology, 2015, 96(4), 866-873 (doi: 10.1099/jgv.0.000024).
  • Galindo I., Almazán F., Bustos M.J., Viñuela E., Carrascosa A.L. African swine fever virus EP153R open reading frame encodes a glycoprotein involved in the hemadsorption of infected cells. Virology, 2000, 266(2): 340-351 (doi: 10.1006/viro.1999.0080).
  • Gonzague M., Roger F., Bastos A., Burger C., Randriamparany T., Smondack S., Cruciere C. Isolation of a non-haemadsorbing, non-cytopathic strain of African swine fever virus in Madagascar. Epidemiology and Infection, 2001, 126(3): 453-459 (doi: 10.1017/s0950268801005465).
  • Pan I.C., Hess W.R. Virulence in African swine fever: its measurement and implications. American Journal of Veterinary Research, 1984, 45(2): 361-366.
  • Mima K.A., Burmakina G.S., Titov I.A., Malogolovkin A.S. African swine fever virus glycoproteins p54 and CD2v in the context of immune response modulation: bioinformatic analysis of genetic variability and heterogeneity. Agricultural Вiology, 2015, 50(6): 785-793 (doi: 10.15389/agrobiology.2015.6.785eng).
  • Barasona J.A., Gallardo C., Cadenas-Fernández E., Jurado C., Rivera B., Rodríguez-Bertos A., Arias M., Sánchez-Vizcaíno J.M. First oral vaccination of Eurasian wild boar against African swine fever virus genotype II. Frontiers in Veterinary Science, 2019, 6: 137 (doi: 10.3389/fvets.2019.00137).
  • Monteagudo P.L., Lacasta A., López E., Bosch L., Collado J., Pina-Pedrero S., Correa-Fiz F., Accensi F., Navas M.J., Vidal E., Bustos M.J., Rodríguez J.M., Gallei A., Nikolin V., Salas M.L., Rodríguez F. BA71ΔCD2: a new recombinant live attenuated African swine fever virus with cross-protective capabilities. Journal of Virology,2017, 191(21): e01058-17 (doi: 10.1128/JVI.01058-17).
  • Lopez E., van Heerden J., Bosch-Camós L., Accensi F., Navas M.J., López-Monteagudo P., Argilaguet J., Gallardo C., Pina-Pedrero S., Salas M.L., Salt J., Rodriguez F. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in cross-protection. Viruses, 2020, 12(12): 1474 (doi: 10.3390/v12121474).
  • Lopez E., Bosch-Camós L., Ramirez-Medina E., Vuono E., Navas M.J., Muñoz M., Accensi F., Zhang J., Alonso U., Argilaguet J., Salas M.L., Anachkov N., Gladue D.P., Borca M.V., Pina-Pedrero S., Rodriguez F. Deletion mutants of the attenuated recombinant ASF virus, BA71ΔCD2, show decreased vaccine efficacy. Viruses,2021, 13(9): 1678 (doi: 10.3390/v13091678).
Еще
Статья обзорная