Infinitely fine partitions of measures spaces
Автор: Troitsky Vladimir Georgievich
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 3 т.1, 1999 года.
Бесплатный доступ
In any measurable space one can find a hyperfinite infinitesimal partition, that is, a hyperfinite set of disjoint inner (in the sense of nonstandard analysis) measurable subsets such that every standard measurable set is representable as a union of sets of this collection. In this paper we characterize the various properties of measures in terms of infinitesimal partitions. In particular, we characterize the non-atomicness of the measures and give a short proof of the Sobchik-Hammer theorem.
Короткий адрес: https://sciup.org/14318586
IDR: 14318586
Список литературы Infinitely fine partitions of measures spaces
- Loeb P. A. A nonstandard representation of measurable spaces, L_\infty, and L*_\infty//Contributions to Nonstandard Analysis.-1972.-P. 65-80.
- Rao B. K. P. S., Rao B. M. Theory of charges.-London, 1983.-P. 141-143.
- Sun Y. On the theory of vector valued Loeb measures and integration//J. Funct. Anal.-1992.-V. 104.-P. 327-362.
- Kusraev A. G., Malugin S. A. On atomic decomposition of vector measures//Siberian Math. J.-1989.-V. 30, № 5.-P. 101-110.