Infinitesimals in ordered vector spaces

Автор: Emelyanov Eduard Yu.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 1 т.15, 2013 года.

Бесплатный доступ

An infinitesimal approach to ordered spaces is proposed. Archimedean property and Dedekind completeness in ordered spaces are discussed from a nonstandard point of view.

Ordered vector space, nonstandard analysis

Короткий адрес: https://sciup.org/14318406

IDR: 14318406

Список литературы Infinitesimals in ordered vector spaces

  • Albeverio S., Hoegh-Krohn R., Fenstad J. E., Lindstrom T. {Nonstandard Methods in Stochastic Analysis and Mathematical Physics.-Orlando: Academic Press Inc., 1986.-xii+514~p.-(Pure and Appl. Math. Vol. 122.)
  • Aliprantis C. D., Tourky R. Cones and Duality.-Providence (R.I.): Amer. Math. Soc., 2007.-xiv+279 p.-(Graduate Studies in Math. Vol. 84).
  • Emel'yanov E. Yu. Ordered and regular hulls of vector lattices//Siberian Math. J.-1994.-Vol. 35, № 6.-P. 1101-1108.
  • Emel'yanov E. Yu. Infinitesimals in vector lattices Nonstandard analysis and vector lattices//Math. Appl.-Dordrecht: Kluwer Acad. Publ., 2000.-Vol. 525.-P. 161-230.
  • Henson C. W., Moore L. C. Jr. Nonstandard analysis and the theory of Banach spaces//Nonstandard Analysis~-Recent Developments.-Berlin: Springer, 1983.-P. 27-112.-(Lecture Notes in Math. Vol. 983).
  • Kusraev A. G., Kutateladze S. S. Nonstandard Methods of Analysis.-Dordrecht: Kluwer Academic Publ., 1994.-viii+435 p.-(Math. and Appl. Vol. 291).
  • Kutateladze S. S. Fundamentals of Functional Analysis.-Dordrecht: Kluwer Academic Publ., 1996.-xiv+276 p.-(Kluwer Texts in the Math. Sciences. Vol. 12).
  • Luxemburg W. A. J., Zaanen A. C. Riesz Spaces. I.-Amsterdam: North-Holland, 1971.-xii+514 p.
  • Schaefer H. H., Wolff M. P. Topological Vector Spaces. 2nd edition.-New York: Springer-Verlag, 1999.-xii+346 p.-(Graduate Texts in Math. Vol. 3).
  • Vulikh B. Z. Introduction to Theory of Cones in Normed Spaces.-Kalinin: Kalinin State Univ., 1977.-84 p.
Еще
Статья научная