Инсулин, головной мозг, болезнь Альцгеймера: новые данные
Автор: Булгакова Светлана Викторовна, Романчук Петр Иванович, Тренева Екатерина Вячеславовна
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Медицинские науки
Статья в выпуске: 3 т.6, 2020 года.
Бесплатный доступ
Последние четыре десятилетия ознаменовались рядом научных открытий. Так стало известно, что инсулин, рецепторы к нему найдены в структурах головного мозга. Кроме того, стала известна роль этого гормона в активации нейрональных стволовых клеток, росте, развитии нейрональной сети, синаптической передаче, когнитивных функций и так далее. Дисфункция передачи сигналов и метаболизма инсулина способствует развитию ряда дегенеративных заболеваний головного мозга. Все больше данных говорит о связи сахарного диабета 2 типа и болезни Альцгеймера, имеющих много общих патофизиологических характеристик. Данный обзор литература посвящен анализу клинических и экспериментальных данных, связывающих инсулин, инсулинорезистентность с дегенеративными процессами в головном мозге, оценке фармакологических стратегий, направленных на коррекцию сигнальных путей инсулина в ЦНС и когнитивных функций. Искусственный интеллект, нейросети «мозг-микробиота» позволяют управлять взаимодействием генетических и эпигенетических программ старения и здорового долголетия. Новая управляемая здоровая биомикробиота и персонализированное функциональное и сбалансированное питание «мозга и микробиоты» - это долговременная медицинская программа пациента, которая позволяет комбинированному применению питательной эпигенетики и фармэпигенетики, а главное проведению профилактики полипрагмазии.
Инсулин, рецепторы инсулина, болезнь альцгеймера, инсулиноподобный пептид 1, нейродегенеративные заболевания
Короткий адрес: https://sciup.org/14116201
IDR: 14116201 | DOI: 10.33619/2414-2948/52/10
Список литературы Инсулин, головной мозг, болезнь Альцгеймера: новые данные
- Романчук П. И. Возраст и микробиота: эпигенетическая и диетическая защита, эндотелиальная и сосудистая реабилитация, новая управляемая здоровая биомикробиота // Бюллетень науки и практики. 2020. Т. 6. №2. С. 67-110. DOI: 10.33619/2414-2948/51/07
- Романчук П. И., Волобуев А. Н. Современные инструменты и методики эпигенетической защиты здорового старения и долголетия Homo sapiens // Бюллетень науки и практики. 2020. Т. 6. №1. С. 43-70. DOI: 10.33619/2414-2948/50/06
- Сухов И. Б. Нарушения гормональной регуляции аденилатциклазной системы в мозге крыс с сахарным диабетом и их коррекция с помощью интраназально вводимых инсулина и серотонина: автореф. дис.. канд. биол. наук. Санкт-Петербург, 2016.
- Булгакова С. В., Романчук П. И., Волобуев А. Н. Нейросети: нейроэндокринология и болезнь Альцгеймера // Бюллетень науки и практики. 2019. Т. 5. №6. С. 112-128. DOI: 10.33619/2414-2948/43/16
- Булгакова С. В., Романчук П. И., Волобуев А. Н. Клинико-биофизические принципы лечения сосудистой деменции и болезни Альцгеймера // Бюллетень науки и практики. 2019. Т. 5. №5. С. 57-72. DOI: 10.33619/2414-2948/42/08
- Tumminia A. et al. Type 2 diabetes mellitus and Alzheimer's disease: role of insulin signalling and therapeutic implications // International journal of molecular sciences. 2018. V. 19. №11. P. 3306.
- DOI: 10.3390/ijms19113306
- Волобуев А. Н., Романчук П. И., Булгакова С. В. Нейросеть "мозг-микробиота": регуляция "висцерального" мозга и накопление когнитивной памяти // Бюллетень науки и практики. 2019. Т. 5. №2. С. 33-52.
- DOI: 10.33619/2414-2948/39/05
- Волобуев А. Н., Пятин В. Ф., Романчук Н. П., Булгакова С. В. Давыдкин И. Л. Когнитивная дисфункция при перевозбуждении структур головного мозга // ВРАЧ. 2018. T. 29. №9. С. 17-20.
- DOI: 10.29296/25877305-2018-09-04
- Волобуев А. Н., Романчук П. И., Романчук Н. П., Давыдкин И. Л., Булгакова С. В. Нарушение памяти при болезни Альцгеймера // ВРАЧ. 2019. T.30. №6. С. 10-13.
- DOI: 10.29296/25877305-2019-06-02
- Chiu S. L., Chen C. M., Cline H. T. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo // Neuron. 2008. V. 58. №5. P. 708-719.
- DOI: 10.1016/j.neuron.2008.04.014
- Apostolatos A. et al. Insulin promotes neuronal survival via the alternatively spliced protein kinase CδII isoform // Journal of Biological Chemistry. 2012. V. 287. №12. P. 9299-9310.
- DOI: 10.1074/jbc.M111.313080
- Kleinridders A. et al. Insulin action in brain regulates systemic metabolism and brain function // Diabetes. 2014. V. 63. №7. P. 2232-2243.
- DOI: 10.2337/db14-0568
- Biessels G. J. et al. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions // The lancet Diabetes & endocrinology. 2014. V. 2. №3. P. 246-255.
- DOI: 10.1016/S2213-8587(13)70088-3
- Vigneri R., Goldfine I. D., Frittitta L. Insulin, insulin receptors, and cancer // Journal of endocrinological investigation. 2016. V. 39. №12. P. 1365-1376.
- DOI: 10.1007/s40618-016-0508-7
- Derakhshan F., Toth C. Insulin and the brain // Current diabetes reviews. 2013. V. 9. №2. P. 102-116.
- DOI: 10.2174/157339913805076454
- Woods S. C. et al. Insulin and the blood-brain barrier //Current pharmaceutical design. 2003. V. 9. №10. P. 795.
- DOI: 10.2174/1381612033455323
- Martins J. P. et al. Communication from the periphery to the hypothalamus through the blood-brain barrier: an in vitro platform // International journal of pharmaceutics. 2016. V. 499. №1-2. P. 119-130.
- DOI: 10.1016/j.ijpharm.2015.12.058
- Devaskar S. U. et al. Insulin gene expression and insulin synthesis in mammalian neuronal cells // Journal of Biological Chemistry. 1994. V. 269. №11. P. 8445-8454.
- DOI: 10.1111/cns.12866
- Pomytkin I. et al. Insulin receptor in the brain: Mechanisms of activation and the role in the CNS pathology and treatment // CNS neuroscience & therapeutics. 2018. V. 24. №9. P. 763-774.
- DOI: 10.1111/cns.12866
- Belfiore A. et al. Insulin receptor isoforms in physiology and disease: an updated view // Endocrine reviews. 2017. V. 38. №5. P. 379-431.
- DOI: 10.1210/er.2017-00073
- Belfiore A. et al. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease // Endocrine reviews. 2009. V. 30. №6. P. 586-623.
- DOI: 10.1210/er.2008-0047
- Hölscher C. New drug treatments show neuroprotective effects in Alzheimer's and Parkinson's diseases // Neural regeneration research. 2014. V. 9. №21. P. 1870.
- DOI: 10.4103/1673-5374.145342
- Akintola A. A., van Heemst D. Insulin, aging, and the brain: mechanisms and implications // Frontiers in endocrinology. 2015. V. 6. P. 13.
- DOI: 10.3389/fendo.2015.00013
- Numan S., Russell D. S. Discrete expression of insulin receptor substrate-4 mRNA in adult rat brain // Molecular brain research. 1999. V. 72. №1. P. 97-102.
- DOI: 10.1016/S0169-328X(99)00160-6
- Araki E. et al. Signalling in mice with targeted disruption // Nature. 1994. V. 372. №1. P. 186-90.
- Schubert M. et al. Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation // Journal of Neuroscience. 2003. V. 23. №18. P. 7084-7092.
- DOI: 10.1523/JNEUROSCI.23-18-07084.2003
- Taguchi A., Wartschow L. M., White M. F. Brain IRS2 signaling coordinates life span and nutrient homeostasis // Science. 2007. V. 317. №5836. P. 369-372.
- DOI: 10.1126/science.1142179
- Sadagurski M. et al. Irs2 and Irs4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis // Molecular metabolism. 2014. V. 3. №1. P. 55-63.
- DOI: 10.1016/j.molmet.2013.10.004
- Brüning J. C. et al. Role of brain insulin receptor in control of body weight and reproduction // Science. 2000. V. 289. №5487. P. 2122-2125.
- DOI: 10.1126/science.289.5487.2122
- Bomfim T. R. et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer's disease-associated Aβ oligomers // The Journal of clinical investigation. 2012. V. 122. №4. P. 1339-1353.
- DOI: 10.1172/JCI57256
- Talbot K. et al. Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline // The Journal of clinical investigation. 2012. V. 122. №4. P. 1316-1338.
- DOI: 10.1172/JCI59903
- Denver P., English A., McClean P. L. Inflammation, insulin signaling and cognitive function in aged APP/PS1 mice // Brain, behavior, and immunity. 2018. V. 70. P. 423-434.
- DOI: 10.1016/j.bbi.2018.03.032
- Boucher J., Kleinridders A., Kahn C. R. Insulin receptor signaling in normal and insulin-resistant states // Cold Spring Harbor perspectives in biology. 2014. V. 6. №1. P. a009191.
- DOI: 10.1101/cshperspect.a009191
- Cho N. H. et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045 // Diabetes research and clinical practice. 2018. V. 138. P. 271-281.
- DOI: 10.1016/j.diabres.2018.02.023
- Pugazhenthi S., Qin L., Reddy P. H. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease // Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2017. V. 1863. №5. P. 1037-1045.
- DOI: 10.1016/j.bbadis.2016.04.017
- Reitz C., Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers // Biochemical pharmacology. 2014. V. 88. №4. P. 640-651.
- DOI: 10.1016/j.bcp.2013.12.024
- Anor C. J. et al. Neuropsychiatric symptoms in Alzheimer disease, vascular dementia, and mixed dementia // Neurodegenerative Diseases. 2017. V. 17. №4-5. P. 127-134.
- DOI: 10.1159/000455127
- McGeer P. L., McGeer E. G. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy // Acta neuropathologica. 2013. V. 126. №4. P. 479-497.
- DOI: 10.1007/s00401-013-1177-7
- Wright A. L. et al. Neuroinflammation and neuronal loss precede Aβ plaque deposition in the hAPP-J20 mouse model of Alzheimer's disease // PloS one. 2013. V. 8. №4.
- DOI: 10.1371/journal.pone.0059586
- Li J. et al. Effects of diabetes mellitus on cognitive decline in patients with Alzheimer disease: a systematic review // Canadian journal of diabetes. 2017. V. 41. №1. P. 114-119.
- DOI: 10.1016/j.jcjd.2016.07.003
- Sripetchwandee J., Chattipakorn N., Chattipakorn S. C. Links between obesity-induced brain insulin resistance, brain mitochondrial dysfunction, and dementia // Frontiers in endocrinology. 2018. V. 9. P. 496.
- DOI: 10.3389/fendo.2018.00496
- Diaz A., Escobedo C., Treviño S., Chávez R., Lopez-Lopez G., Moran C.,.. Muñoz-Arenas G. Metabolic syndrome exacerbates the recognition memory impairment and oxidative-inflammatory response in rats with an intrahippocampal injection of amyloid beta // Oxidative medicine and cellular longevity. 2018. P. 1-42.
- DOI: 10.1155/2018/1358057
- Treviño S. et al. A high calorie diet causes memory loss, metabolic syndrome and oxidative stress into hippocampus and temporal cortex of rats // Synapse. 2015. V. 69. №9. P. 421-433.
- DOI: 10.1002/syn.21832
- Pierce A. L., Bullain S. S., Kawas C. H. Late-onset Alzheimer disease // Neurologic clinics. 2017. V. 35. №2. P. 283-293.
- DOI: 10.1016/j.ncl.2017.01.006
- Yin F. et al. Energy metabolism and inflammation in brain aging and Alzheimer's disease // Free Radical Biology and Medicine. 2016. V. 100. P. 108-122.
- DOI: 10.1016/j.freeradbiomed.2016.04.200
- Denver P., McClean P. L. Distinguishing normal brain aging from the development of Alzheimer's disease: inflammation, insulin signaling and cognition // Neural regeneration research. 2018. V. 13. №10. P. 1719.
- DOI: 10.4103/1673-5374.238608
- Frölich L. et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease // Journal of neural transmission. 1998. V. 105. №4-5. P. 423-438.
- DOI: 10.1007/s007020050068
- Ratzmann K. P., Hampel R. Glucose and insulin concentration patterns in cerebrospinal fluid following intravenous glucose injection in humans // Endokrinologie. 1980. V. 76. №2. P. 185-188. PMID:
- ISBN: 7004864
- Querfurth H. W., LaFerla F. M. Mechanisms of disease // N Engl J Med. 2010. V. 362. №4. P. 329-344.
- Suzanne M. Insulin resistance and neurodegeneration: progress towards the development of new therapeutics for Alzheimer's disease // Drugs. 2017. V. 77. №1. P. 47-65.
- DOI: 10.1007/s40265-016-0674-0
- Gabuzda D. et al. Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative // Journal of Biological Chemistry. 1994. V. 269. №18. P. 13623-13628.
- Gasparini L. et al. Stimulation of β-amyloid precursor protein trafficking by insulin reduces intraneuronal β-amyloid and requires mitogen-activated protein kinase signaling // Journal of Neuroscience. 2001. V. 21. №8. P. 2561-2570.
- DOI: 10.1523/JNEUROSCI.21-08-02561.2001
- Nisbet R. M. et al. Tau aggregation and its interplay with amyloid-β // Acta neuropathologica. 2015. V. 129. №2. P. 207-220.
- DOI: 10.1007/s00401-014-1371-2
- Zimbone S. et al. Amyloid Beta monomers regulate cyclic adenosine monophosphate response element binding protein functions by activating type-1 insulin-like growth factor receptors in neuronal cells // Aging cell. 2018. V. 17. №1. P. e12684.
- DOI: 10.1111/acel.12684
- Ling X. et al. Amyloid beta antagonizes insulin promoted secretion of the amyloid beta protein precursor // Journal of Alzheimer's disease. 2002. V. 4. №5. P. 369-374.
- DOI: 10.3233/JAD-2002-4504
- Zhao W. Q. et al. Amyloid beta oligomers induce impairment of neuronal insulin receptors // The FASEB Journal. 2008. V. 22. №1. P. 246-260.
- DOI: 10.1096/fj.06-7703com
- Ma Q. L. et al. β-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin // Journal of Neuroscience. 2009. V. 29. №28. P. 9078-9089.
- DOI: 10.1523/JNEUROSCI.1071-09.2009
- Schubert M. et al. Role for neuronal insulin resistance in neurodegenerative diseases // Proceedings of the National Academy of Sciences. 2004. V. 101. №9. P. 3100-3105.
- DOI: 10.1073/pnas.0308724101
- Vandal M. et al. Insulin reverses the high-fat diet-induced increase in brain Aβ and improves memory in an animal model of Alzheimer disease // Diabetes. 2014. V. 63. №12. P. 4291-4301.
- DOI: 10.2337/db14-0375
- Farris W. et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo // Proceedings of the National Academy of Sciences. 2003. V. 100. №7. P. 4162-4167.
- DOI: 10.1073/pnas.0230450100
- Ittner L. M. et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models // Cell. 2010. V. 142. №3. P. 387-397.
- DOI: 10.1016/j.cell.2010.06.036
- Hong M., Lee V. M. Y. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons // Journal of Biological Chemistry. 1997. V. 272. №31. P. 19547-19553.
- DOI: 10.1074/jbc.272.40.25326
- Bhat R. et al. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418 // Journal of Biological Chemistry. 2003. V. 278. №46. P. 45937-45945.
- DOI: 10.1074/jbc.M306268200
- Freude S. et al. Peripheral hyperinsulinemia promotes tau phosphorylation in vivo // Diabetes. 2005. V. 54. №12. P. 3343-3348.
- DOI: 10.2337/diabetes.54.12.3343
- Cheng C. M. et al. Tau is hyperphosphorylated in the insulin-like growth factor-I null brain // Endocrinology. 2005. V. 146. №12. P. 5086-5091.
- DOI: 10.1210/en.2005-0063
- Phiel C. J. et al. GSK-3α regulates production of Alzheimer's disease amyloid-β peptides // Nature. 2003. V. 423. №6938. P. 435-439.
- DOI: 10.1038/nature01640
- Sims-Robinson C. et al. How does diabetes accelerate Alzheimer disease pathology? // Nature Reviews Neurology. 2010. V. 6. №10. P. 551.
- DOI: 10.1038/nrneurol.2010.130
- De la Monte S. M. et al. Neuronal thread protein regulation and interaction with microtubule-associated proteins in SH-Sy5y neuronal cells // Cellular and Molecular Life Sciences CMLS. 2003. V. 60. №12. P. 2679-2691.
- DOI: 10.1007/s00018-003-3305-3
- Bedse G. et al. Aberrant insulin signaling in Alzheimer's disease: current knowledge // Frontiers in neuroscience. 2015. V. 9. P. 204.
- DOI: 10.3389/fnins.2015.00204
- Zlokovic B. V. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders // Nature Reviews Neuroscience. 2011. V. 12. №12. P. 723-738.
- DOI: 10.1038/nrn3114
- Kahn A. M. et al. Insulin Acutely Inhibits Cultured Vascular Smooth Muscle Cell Contraction by a Nitric Oxide Synthase-Dependent Pathway // Hypertension. 1997. V. 30. №4. P. 928-933.
- DOI: 10.1161/01.HYP.30.4.928
- Bhamra M. S., Ashton N. J. Finding a pathological diagnosis for A lzheimer's disease: Are inflammatory molecules the answer? // Electrophoresis. 2012. V. 33. №24. P. 3598-3607.
- DOI: 10.1002/elps.201200161
- Mushtaq G. et al. Alzheimer's disease and type 2 diabetes via chronic inflammatory mechanisms // Saudi journal of biological sciences. 2015. V. 22. №1. P. 4-13.
- DOI: 10.1016/j.sjbs.2014.05.003
- Fishel M. A. et al. Hyperinsulinemia provokes synchronous increases in central inflammation and β-amyloid in normal adults // Archives of neurology. 2005. V. 62. №10. P. 1539-1544.
- DOI: 10.1001/archneur.62.10.noc50112
- Sokolova A. et al. Monocyte chemoattractant protein-1 plays a dominant role in the chronic inflammation observed in Alzheimer's disease // Brain pathology. 2009. V. 19. №3. P. 392-398.
- DOI: 10.1111/j.1750-3639.2008.00188.x
- Nakamura M., Watanabe N. Ubiquitin-like protein MNSFβ/endophilin II complex regulates Dectin-1-mediated phagocytosis and inflammatory responses in macrophages // Biochemical and biophysical research communications. 2010. V. 401. №2. P. 257-261.
- DOI: 10.1016/j.bbrc.2010.09.045
- Akash M. S. H., Rehman K., Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus // Journal of cellular biochemistry. 2013. V. 114. №3. P. 525-531.
- DOI: 10.1002/jcb.24402
- Erickson M. A., Hansen K., Banks W. A. Inflammation-induced dysfunction of the low-density lipoprotein receptor-related protein-1 at the blood-brain barrier: protection by the antioxidant N-acetylcysteine // Brain, behavior, and immunity. 2012. V. 26. №7. P. 1085-1094.
- DOI: 10.1016/j.bbi.2012.07.003
- Matrone C. et al. Inflammatory risk factors and pathologies promoting Alzheimer's disease progression: is RAGE the key // Histology and histopathology. 2015. V. 30. №2. P. 125-139.
- Münch G. et al. Alzheimer's disease-synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts // Journal of neural transmission. 1998. V. 105. №4-5. P. 439-461.
- DOI: 10.1007/s007020050069
- Deane R. et al. RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain // Nature medicine. 2003. V. 9. №7. P. 907-913.
- DOI: 10.1038/nm890
- Chiang M. C. et al. Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against Amyloid-beta-induced mitochondrial dysfunction // Experimental cell research. 2016. V. 347. №2. P. 322-331.
- DOI: 10.1016/j.yexcr.2016.08.013
- Chung M. M. et al. The neuroprotective role of metformin in advanced glycation end product treated human neural stem cells is AMPK-dependent // Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2015. V. 1852. №5. P. 720-731.
- DOI: 10.1016/j.bbadis.2015.01.006
- Gupta A., Bisht B., Dey C. S. Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer's-like changes // Neuropharmacology. 2011. V. 60. №6. P. 910-920.
- DOI: 10.1016/j.neuropharm.2011.01.033
- Kickstein E. et al. Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling // Proceedings of the National Academy of Sciences. 2010. V. 107. №50. P. 21830-21835.
- DOI: 10.1073/pnas.0912793107
- Li J. et al. Metformin attenuates Alzheimer's disease-like neuropathology in obese, leptin-resistant mice // Pharmacology biochemistry and behavior. 2012. V. 101. №4. P. 564-574.
- DOI: 10.1016/j.pbb.2012.03.002
- Chen Y. et al. Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer's amyloid peptides via up-regulating BACE1 transcription // Proceedings of the National Academy of Sciences. 2009. V. 106. №10. P. 3907-3912.
- DOI: 10.1073/pnas.0807991106
- Ng T. P. et al. Long-term metformin usage and cognitive function among older adults with diabetes // Journal of Alzheimer's Disease. 2014. V. 41. №1. P. 61-68.
- DOI: 10.3233/JAD-131901
- Guo M. et al. Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus // Clinical and experimental pharmacology and physiology. 2014. V. 41. №9. P. 650-656.
- DOI: 10.1111/1440-1681.12265
- Herath P. M. et al. The effect of diabetes medication on cognitive function: evidence from the PATH through life study // BioMed research international. 2016. V. 2016.
- DOI: 10.1155/2016/7208429
- Moore E. M. et al. Increased risk of cognitive impairment in patients with diabetes is associated with metformin // Diabetes care. 2013. V. 36. №10. P. 2981-2987.
- DOI: 10.2337/dc13-0229
- Osborne C. et al. Glimepiride protects neurons against amyloid-β-induced synapse damage // Neuropharmacology. 2016. V. 101. P. 225-236.
- DOI: 10.1016/j.neuropharm.2015.09.030
- Alp H. et al. Protective effects of beta glucan and gliclazide on brain tissue and sciatic nerve of diabetic rats induced by streptozosin // Experimental diabetes research. 2012. V. 2012.
- DOI: 10.1155/2012/230342
- Esmaeili M. H., Bahari B., Salari A. A. ATP-sensitive potassium-channel inhibitor glibenclamide attenuates HPA axis hyperactivity, depression-and anxiety-related symptoms in a rat model of Alzheimer's disease // Brain research bulletin. 2018. V. 137. P. 265-276.
- DOI: 10.1016/j.brainresbull.2018.01.001
- Hsu C. C. et al. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin // Journal of Alzheimer's Disease. 2011. V. 24. №3. P. 485-493.
- DOI: 10.3233/JAD-2011-101524
- Landreth G. Therapeutic use of agonists of the nuclear receptor PPARγ in Alzheimer's disease // Current Alzheimer Research. 2007. V. 4. №2. P. 159-164.
- DOI: 10.2174/156720507780362092
- Heneka M. T. et al. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1-42 levels in APPV717I transgenic mice // Brain. 2005. V. 128. №6. P. 1442-1453.
- DOI: 10.1093/brain/awh452
- Yu Y. et al. Insulin sensitizers improve learning and attenuate tau hyperphosphorylation and neuroinflammation in 3xTg-AD mice // Journal of neural transmission. 2015. V. 122. №4. P. 593-606.
- DOI: 10.1007/s00702-014-1294-z
- Fernandez-Martos C. M. et al. Combination treatment with leptin and pioglitazone in a mouse model of Alzheimer's disease // Alzheimer's & Dementia: Translational Research & Clinical Interventions. 2017. V. 3. №1. P. 92-106.
- DOI: 10.1016/j.trci.2016.11.002
- Sato T. et al. Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease // Neurobiology of aging. 2011. V. 32. №9. P. 1626-1633.
- DOI: 10.1016/j.neurobiolaging.2009.10.009
- Cheng H. et al. The peroxisome proliferators activated receptor-gamma agonists as therapeutics for the treatment of Alzheimer's disease and mild-to-moderate Alzheimer's disease: a meta-analysis // International Journal of Neuroscience. 2016. V. 126. №4. P. 299-307.
- DOI: 10.3109/00207454.2015.1015722
- Hölscher C. The role of GLP-1 in neuronal activity and neurodegeneration // Vitamins & Hormones. Academic Press, 2010. V. 84. P. 331-354.
- DOI: 10.1016/B978-0-12-381517-0.00013-8
- Hunter K., Hölscher C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis // BMC neuroscience. 2012. V. 13. №1. P. 33.
- DOI: 10.1186/1471-2202-13-33
- McClean P. L., Hölscher C. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer's disease // Neuropharmacology. 2014. V. 76. P. 57-67.
- DOI: 10.1016/j.neuropharm.2013.08.005
- Hansen H. H. et al. The GLP-1 receptor agonist liraglutide reduces pathology-specific tau phosphorylation and improves motor function in a transgenic hTauP301L mouse model of tauopathy // Brain research. 2016. V. 1634. P. 158-170.
- DOI: 10.1016/j.brainres.2015.12.052
- Gejl M. et al. In Alzheimer's disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial // Frontiers in aging neuroscience. 2016. V. 8. P. 108.
- DOI: 10.3389/fnagi.2016.00108
- Kosaraju J. et al. Saxagliptin: a dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer's disease // Neuropharmacology. 2013. V. 72. P. 291-300.
- DOI: 10.1016/j.neuropharm.2013.04.008
- Kosaraju J. et al. Vildagliptin: an anti-diabetes agent ameliorates cognitive deficits and pathology observed in streptozotocin-induced Alzheimer's disease // Journal of Pharmacy and Pharmacology. 2013. V. 65. №12. P. 1773-1784.
- DOI: 10.1111/jphp.12148
- Kornelius E. et al. DPP-4 inhibitor linagliptin attenuates Aβ-induced cytotoxicity through activation of AMPK in neuronal cells // CNS neuroscience & therapeutics. 2015. V. 21. №7. P. 549-557.
- DOI: 10.1111/cns.12404
- Rizzo M. R. et al. Dipeptidyl peptidase-4 inhibitors have protective effect on cognitive impairment in aged diabetic patients with mild cognitive impairment // Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2014. V. 69. №9. P. 1122-1131.
- DOI: 10.1093/gerona/glu032
- Kern W. et al. Improving influence of insulin on cognitive functions in humans // Neuroendocrinology. 2001. V. 74. №4. P. 270-280.
- DOI: 10.1159/000054694
- Freiherr J. et al. Intranasal insulin as a treatment for Alzheimer's disease: a review of basic research and clinical evidence // CNS drugs. 2013. V. 27. №7. P. 505-514.
- DOI: 10.1007/s40263-013-0076-8
- Plum L., Schubert M., Brüning J. C. The role of insulin receptor signaling in the brain // Trends in Endocrinology & Metabolism. 2005. V. 16. №2. P. 59-65.
- DOI: 10.1016/j.tem.2005.01.008
- Craft S. et al. Effects of regular and long-acting insulin on cognition and Alzheimer's disease biomarkers: a pilot clinical trial // Journal of Alzheimer's Disease. 2017. V. 57. №4. P. 1325-1334.
- DOI: 10.3233/JAD-161256
- Łabuzek K. et al. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide // Pharmacological Reports. 2010. V. 62. №5. P. 956-965.
- DOI: 10.1016/S1734-1140(10)70357-1
- Cheng C. et al. Type 2 diabetes and antidiabetic medications in relation to dementia diagnosis // Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2014. V. 69. №10. P. 1299-1305.
- DOI: 10.1093/gerona/glu073
- Luchsinger J. A. et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial // Journal of Alzheimer's Disease. 2016. V. 51. №2. P. 501-514.
- DOI: 10.3233/JAD-150493
- Luchsinger J. A. et al. Metformin, lifestyle intervention, and cognition in the diabetes prevention program outcomes study // Diabetes care. 2017. V. 40. №7. P. 958-965.
- DOI: 10.2337/dc16-2376
- Valencia W. M. et al. Metformin and ageing: improving ageing outcomes beyond glycaemic control // Diabetologia. 2017. V. 60. №9. P. 1630-1638.
- DOI: 10.1007/s00125-017-4349-5
- Imfeld P. et al. Metformin, other antidiabetic drugs, and risk of Alzheimer's disease: a population-based case-control study // Journal of the American Geriatrics Society. 2012. V. 60. №5. P. 916-921.
- DOI: 10.1111/j.1532-5415.2012.03916.x
- Geldmacher D. S. et al. A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease // Archives of neurology. 2011. V. 68. №1. P. 45-50.
- DOI: 10.1001/archneurol.2010.229
- Femminella G. D. et al. Antidiabetic drugs in Alzheimer's disease: Mechanisms of action and future perspectives // Journal of diabetes research. 2017. V. 2017.
- DOI: 10.1155/2017/7420796
- Nauck M. A. Glucagon-like peptide 1 (GLP-1) in the treatment of diabetes // Hormone and metabolic research. 2004. V. 36. №11/12. P. 852-858.
- DOI: 10.1055/s-2004-826175
- Drucker D. J. et al. Incretin-based therapies for the treatment of type 2 diabetes: evaluation of the risks and benefits // Diabetes care. 2010. V. 33. №2. P. 428-433.
- DOI: 10.2337/dc09-1499
- Cork S. C. et al. Distribution and characterization of Glucagon-like peptide-1 receptor expressing cells in the mouse brain // Molecular metabolism. 2015. V. 4. №10. P. 718-731.
- DOI: 10.1016/j.molmet.2015.07.008
- Liu X. Y. et al. Liraglutide prevents beta-amyloid-induced neurotoxicity in SH-SY5Y cells via a PI3K-dependent signaling pathway // Neurological research. 2016. V. 38. №4. P. 313-319.
- DOI: 10.1080/01616412.2016.1145914
- Cai H. Y. et al. Lixisenatide attenuates the detrimental effects of amyloid β protein on spatial working memory and hippocampal neurons in rats // Behavioural brain research. 2017. V. 318. P. 28-35.
- DOI: 10.1016/j.bbr.2016.10.033
- Isik A. T. et al. The effects of sitagliptin, a DPP-4 inhibitor, on cognitive functions in elderly diabetic patients with or without Alzheimer's disease // Diabetes research and clinical practice. 2017. V. 123. P. 192-198.
- DOI: 10.1016/j.diabres.2016.12.010
- Shingo A. S. et al. Intracerebroventricular administration of an insulin analogue recovers STZ-induced cognitive decline in rats // Behavioural brain research. 2013. V. 241. P. 105-111.
- DOI: 10.1016/j.bbr.2012.12.005