Интегрирование модифицированного уравнения Кортевега - де Фриза с зависящими от времени коэффициентами и с самосогласованным источником

Автор: Собиров Ш.К.У., Хоитметов У.А.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 3 т.25, 2023 года.

Бесплатный доступ

В данной работе рассматривается задача Коши для модифицированного уравнения Кортевега - де Фриза с зависящими от времени коэффициентами и самосогласованным источником в классе быстроубывающих функций. Для решения поставленной задачи используется метод обратной задачи теории рассеяния. Найдены пары Лакса, что позволит применить метод обратной задачи рассеяния для решения поставленной задачи Коши. Отметим, что в рассматриваемом случае оператор Дирака не является самосопряженным, поэтому собственные значения могут быть кратными. Найдены уравнения динамики изменения во времени данных рассеяния несамосопряженного оператора Дирака с потенциалом, являющимся решением модифицированного уравнения Кортевега - де Фриза с переменными коэффициентами, зависящими от времени и с самосогласованным источником в классе быстроубывающих функций. Рассмотрен особый случай модифицированного уравнения Кортевега - де Фриза с переменными коэффициентами, зависящими от времени, и самосогласованным источником, а именно нагруженное модифицированное уравнение Кортевега - де Фриза с самосогласованным источником. Найдены уравнения динамики изменения во времени данных рассеяния несамосопряженного оператора Дирака с потенциалом, являющимся решением нагруженного модифицированного уравнения Кортевега - де Фриза с переменными коэффициентами в классе быстроубывающих функций. Приведены примеры, иллюстрирующие применение полученных результатов.

Еще

Нагруженное модифицированное уравнение кортевега - де фриза, решения йоста, данные рассеяния, интегральное уравнение гельфанда - левитана - марченко

Короткий адрес: https://sciup.org/143180467

IDR: 143180467   |   DOI: 10.46698/q2165-6700-0718-r

Список литературы Интегрирование модифицированного уравнения Кортевега - де Фриза с зависящими от времени коэффициентами и с самосогласованным источником

  • Zabusky N. J., Kruskal M. D. Interaction of solitons in a collislontess plasma and the recurrence of initial states // Phys. Rev. Lett.-1965.-Vol. 15, № 6.-P. 240-243.
  • Gardner C. S., Greene I. M., Kruskal M. D., Miura R. M. Method for solving the Korteweg-de Vries equation // Phys. Rev. Lett.-1967.-Vol. 19.-P. 1095-1097.
  • Lax P. D. Integrals of nonlinear equations of evolution and solitary waves // Comm. Pure and Appl. Math.-1968.-Vol. 21, № 5.-P. 467-490. DOI: 10.1002/cpa.3160210503.
  • Захаров В. Е., Шабат А. Б. Точная теория двумерной самофокусировки и одномерной автомодуляции волн в нелинейных средах // Журн. эксперим. и теор. физики.—1971.—Т. 61.—С. 118-134.
  • Wadati M. The exact solution of the modified Korteweg-de Vries equation // J. Phys. Soc. Japan.— 1972.-Vol. 32.—P. 1681. DOI: 10.1143/JPSJ.32.1681.
  • Khater A. H., El-Kalaawy O. H., Callebaut D. K. Backlund transformations and exact solutions for Alfven solitons in a relativistic electron-positron plasma // Physica Scripta.—1998.—Vol. 58, № 6.— P. 545-548. DOI: 10.1088/0031-8949/58/6/001.
  • Tappert F. D., Varma C. M. Asymptotic theory of self-trapping of heat pulses in solids // Phys. Rev. Lett.-1970.-Vol. 25.-P. 1108-1111. DOI: 10.1103/PhysRevLett.25.1108.
  • Mamedov K. A. Integration of mKdV equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues // Russian Mathematics.—2020.—Vol. 64.—P. 66-78. DOI: 10.3103/S1066369X20100072.
  • Wu J., Geng X. Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation // Communications in Nonlinear Science and Numerical Simulation.—2017.—Vol. 53.— P. 83-93. DOI: 10.1016/j.cnsns.2017.03.022.
  • Khasanov A. B., Hoitmetov U. A. On integration of the loaded mKdV equation in the class of rapidly decreasing functions // The Bulletin of Irkutsk State University. Ser. Math.—2021.—Vol. 38.—P. 19-35. DOI: 10.26516/1997-7670.2021.38.19.
  • Vaneeva O. Lie symmetries and exact solutions of variable coefficient mKdV equations: an equivalence based approach // Communications in Nonlinear Science and Numerical Simulation.—2012.—Vol. 17, № 2.—P. 611-618. DOI: 10.1016/j.cnsns.2011.06.038.
  • Das S., Ghosh D. AKNS formalism and exact solutions of KdV and modified KdV equations with variable-coefficients // International Journal of Advanced Research in Mathematics.—2016.—Vol. 6.— P. 32-41. DOI: 10.18052/www.scipress.com/IJARM.6.32.
  • Zheng X., Shang Y., Huang Y. Abundant Explicit and Exact Solutions for the variable Coefficient mKdV Equations // Hindawi Publishing Corporation Abstract and Applied Analysis.—2013.—7 p.— Article ID 109690. DOI: 10.1155/2013/109690.
  • Демонтис Ф. Точные решения модифицированного уравнения Кортевега — де Фриза // Теоретическая и математическая физика.—2011.—Т. 168, № 1.—С. 35-48.
  • Zhang D.-J., Zhao S.-L., Sun Y.-Y., Zhou J. Solutions to the modified Korteweg-de Vries equation // Reviews in Math. Phys.—2014.—Vol. 26, № 7, 1430006.—42 p. DOI: 10.1142/S0129055X14300064.
  • Hirota R. Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons // J. Phys. Soc. Jpn.—1972.—Vol. 33.—P. 1456-1458. DOI: 10.1143/JPSJ.33.1456.
  • Gesztesy T., Schweiger W., Simon B. Commutation methods applied to the mKdV-equation // Trans. Amer. Math. Soc.—1991.—Vol. 324.—P. 465-525. DOI: 10.2307/2001730.
  • Pradhan K., Panigrahi P. K. Parametrically controlling solitary wave dynamics in the modified Korteweg-de Vries equation // J. Phys. A: Math. Gen.—2006.—Vol. 39.—P. 343-348. DOI: 10.1088/0305-4470/39/20/L08.
  • Yan Z. The modified KdV equation with variable coefficients:Exact uni/bi-variable travelling wave-like solutions // Applied Mathematics and Computation.—2008.—Vol. 203.—P. 106-112. DOI: 10.1016/j.amc.2008.04.006.
  • Хасанов А. Б. Об обратной задачи теории рассеяния для системы двух несамосопряженных дифференциальных уравнений первого порядка // Докл. АН СССР.—1984.—Т. 277, № 3.—С. 559-562.
  • Абловиц М., Сигур Х. Солитоны и метод обратной задачи.—М.: Мир, 1987.—479 c.
  • Додд Р., Эйлбек Дж., Гиббон Дж., Моррис Х. Солитоны и нелинейные волновые уравнения.—М.: Мир, 1988.—697 c.
  • Нахушев А. М. Уравнения математической биологии.—М.: Высшая школа, 1995.—304 c.
  • Нахушев А. М. Нагруженные уравнения и их приложения // Дифф. ур-я.—1983.—T. 19, № 1.— С. 86-94.
  • Кожанов А. И. Нелинейные нагруженные уравнения и обратные задачи // Журн. вычисл. матем. и мат. физ.—2004.—T. 44, № 4.—С. 694-716.
  • Hasanov A. B., Hoitmetov U. A. On integration of the loaded Korteweg-de Vries equation in the class of rapidly decreasing functions // Proc. Inst. Math. Mech. NAS Azer.—2021.—Vol. 47, № 2.—P. 250-261. DOI: 10.30546/2409-4994.47.2.250.
  • Hoitmetov U. A. Integration of the loaded KdV equation with a self-consistent source of integral type in the class of rapidly decreasing complex-valued functions // Siberian Adv. Math.—2022.—Vol. 33, № 2.—P. 102-114. DOI: 10.1134/S1055134422020043.
  • Хасанов А. Б., Хоитметов У. А. Интегрирование общего нагруженного уравнения Кортевега — де Фриза с интегральным источником в классе быстроубывающих комплекснозначных функций // Изв. вузов. Мат.—2021.—№ 7.—С. 52-66.
  • Khasanov A. B., Hoitmetov U. A. On complex-valued solutions of the general loaded Korteweg-de Vries equation with a source // Diff. Equat.—2022.—Vol. 58, № 3.—P. 381-391. DOI: 10.1134/S0012266122030089.
  • Hoitmetov U. A. Integration of the loaded general Korteweg-de Vries equation in the class of rapidly decreasing complex-valued functions // Eurasian Math. J.—2022.—Vol. 13, № 2.—P. 43-54. DOI: 10.32523/2077-9879-2022-13-2-43-54.
  • Babajanov B., Abdikarimov F. The Application of the functional variable method for solving the loaded non-linear evaluation equations // Front. Appl. Math. Stat.—2022.—Vol. 8, 912674. DOI: 10.3389/fams.2022.912674.
Еще
Статья научная