Intelligent binocular compound eye vision system for detecting azimuth and distance to object on plane

Автор: Belov K.N., Bibikova E.A., Buldashev I.V., Kundikova N.D., Mukhin Y.V., Nikolaev A.N., Portnov A.V., Ridnyi Y.M., Sokolinsky L.B., Starkov A.E., Shulginov A.A.

Журнал: Вестник Южно-Уральского государственного университета. Серия: Вычислительная математика и информатика @vestnik-susu-cmi

Статья в выпуске: 1 т.14, 2025 года.

Бесплатный доступ

The article is devoted to the prototype of an artificial binocular compound eye vision system for detecting the azimuth and distance to an object on a plane using an artificial neural network. A analytical review of moderndistance and azimuth detection systems based on active and passive sensors is given. An intelligent binocularvision system is proposed, which is a passive optical sensor that allows you to determine the azimuth and distanceto a round object of arbitrary size, emitting in the visible or infrared ranges of the electromagnetic spectrum. Thegeneral architecture of the compound eye vision system is considered. The main structural elements of the systemare: an optical module, a hardware and software controller and a neural network module. The optical moduleuses a pair of lenses to convert the light signal from the object into two pixel Fourier images, which are fed to theinput of the hardware and software controller. The controller performs primary processing of pixel Fourier imagesand converts them into two bit masks, the elements of which correspond to separate facets (each facet integratesfour adjacent columns of the pixel image). The resulting bit masks are fed into a neural network module, which,based on their analysis, determines the coordinates of the object in the form of distance and azimuth.

Еще

Compound eye vision, optical model, distance and azimuth detection, ccd image sensor, neural network model, prototype

Короткий адрес: https://sciup.org/147248018

IDR: 147248018   |   DOI: 10.14529/cmse250101

Статья научная