Interpretable Fuzzy System for Malicious Domain Classification Using Projection Neural Network
Автор: Rajan Prasad, Praveen Kumar Shukla
Журнал: International Journal of Wireless and Microwave Technologies @ijwmt
Статья в выпуске: 6 Vol.13, 2023 года.
Бесплатный доступ
In this study, we suggest an interpretable fuzzy system for the classification of malicious domains. The proposed system is integration of Sugeno type fuzzy system and projection neural network, the main advantage of interpretable fuzzy system is to classify the patterns and self-explainable capability. Whereas the projection network is used to exact mapped fuzzy inference rules to the network's projection layer. On the other hands, the system is able to deal with large amount of real-time data. The proposed model is tested malicious URL datasets collected from Alexa. The experimental results show that the system is able to classify malicious domain with high accuracy and interpretability as compared to existing methods. The proposed model is usefull to classify malicious attacks and explain the couses behind the decision. The evaluation of model based on confusion matrices, ROC and the nauck index is used for the interpretability assessments.
DGA domain classification, interpretable neuro-fuzzy system, malicious domain, projection network
Короткий адрес: https://sciup.org/15019234
IDR: 15019234 | DOI: 10.5815/ijwmt.2023.06.01
Список литературы Interpretable Fuzzy System for Malicious Domain Classification Using Projection Neural Network
- [1]Sánchez-Paniagua M, Fidalgo E, Alegre E, Alaiz-Rodríguez R. Phishing websites detection using a novel multipurpose Sánchez-Paniagua M, Fidalgo E, Alegre E, Alaiz-Rodríguez R. Phishing websites detection using a novel multipurpose dataset and web technologies features. Expert Systems with Applications. 2022 Nov 30;207:118010.
- Nadler A, Bitton R, Brodt O, Shabtai A. On the vulnerability of anti-malware solutions to DNS attacks. Computers & Security. 2022 May 1;116:102687.
- Divya T, Amritha PP, Viswanathan S. A model to detect domain names generated by DGA malware. Procedia Computer Science. 2022 Jan 1;215:403-12.
- Feily M, Shahrestani A, Ramadass S. A survey of botnet and botnet detection. In2009 Third International Conference on Emerging Security Information, Systems and Technologies 2009 Jun 18 (pp. 268-273). IEEE.
- Karasaridis A, Rexroad B, Hoeflin DA. Wide-Scale Botnet Detection and Characterization. HotBots. 2007 Apr 10;7:7-.
- Karim A, Salleh RB, Shiraz M, Shah SA, Awan I, Anuar NB. Botnet detection techniques: review, future trends, and issues. Journal of Zhejiang University SCIENCE C. 2014 Nov;15:943-83.
- Saad S, Traore I, Ghorbani A, Sayed B, Zhao D, Lu W, Felix J, Hakimian P. Detecting P2P botnets through network behavior analysis and machine learning. In2011 Ninth annual international conference on privacy, security and trust 2011 Jul 19 (pp. 174-180). IEEE.
- Binkley JR, Singh S. An algorithm for anomaly-based botnet detection. SRUTI. 2006 Jul 7;6:7-.
- Garcia S, Grill M, Stiborek J, Zunino A. An empirical comparison of botnet detection methods. computers & security. 2014 Sep 1;45:100-23.
- Cooke E, Jahanian F, McPherson D. The Zombie Roundup: Understanding, Detecting, and Disrupting Botnets. SRUTI. 2005 Jul 7;5:6-.
- Alieyan K, ALmomani A, Manasrah A, Kadhum MM. A survey of botnet detection based on DNS. Neural Computing and Applications. 2017 Jul;28:1541-58.
- Eslahi M, Salleh R, Anuar NB. Bots and botnets: An overview of characteristics, detection and challenges. In2012 IEEE International Conference on Control System, Computing and Engineering 2012 Nov 23 (pp. 349-354). IEEE.
- Xie Y, Yu F, Achan K, Panigrahy R, Hulten G, Osipkov I. Spamming botnets: signatures and characteristics. ACM SIGCOMM Computer Communication Review. 2008 Aug 17;38(4):171-82.
- Selvaraj NP, Paulraj S, Ramadass P, Kaluri R, Shorfuzzaman M, Alsufyani A, Uddin M. Exposure of botnets in cloud environment by expending trust model with CANFES classification approach. Electronics. 2022 Jul 28;11(15):2350.
- Shen WY, Manickam S, Al-Shareeda MA. Review of advanced monitoring mechanisms in peer-to-peer (p2p) botnets. arXiv preprint arXiv:2207.12936. 2022 Jul 17.
- Nguyen Quoc K, Bui T, Le D, Tran D, Nguyen T, Nguyen HT. Detecting DGA Botnet based on Malware Behavior Analysis. InProceedings of the 11th International Symposium on Information and Communication Technology 2022 Dec 1 (pp. 158-164).
- Manasrah AM, Khdour T, Freehat R. DGA-based botnets detection using DNS traffic mining. Journal of King Saud University-Computer and Information Sciences. 2022 May 1;34(5):2045-61.
- Rajalakshmi, R., Ramraj, S., Ramesh Kannan, R. (2019). Transfer Learning Approach for Identification of Malicious Domain Names. In: Thampi, S., Madria, S., Wang, G., Rawat, D., Alcaraz Calero, J. (eds) Security in Computing and Communications. SSCC 2018. Communications in Computer and Information Science, vol 969. Springer, Singapore. https://doi.org/10.1007/978-981-13-5826-5_51.
- Nagunwa T, Kearney P, Fouad S. A machine learning approach for detecting fast flux phishing hostnames. Journal of Information Security and Applications. 2022 Mar 1;65:103125.
- Nguyen Quoc K, Bui T, Le D, Tran D, Nguyen T, Nguyen HT. Detecting DGA Botnet based on Malware Behavior Analysis. InProceedings of the 11th International Symposium on Information and Communication Technology 2022 Dec 1 (pp. 158-164).
- Schiavoni, S., Maggi, F., Cavallaro, L., Zanero, S. (2014). Phoenix: DGA-Based Botnet Tracking and Intelligence. In: Dietrich, S. (eds) Detection of Intrusions and Malware, and Vulnerability Assessment. DIMVA 2014. Lecture Notes in Computer Science, vol 8550. Springer, Cham. https://doi.org/10.1007/978-3-319-08509-8_11.
- Antonakakis M, Perdisci R, Vasiloglou N, Lee W. Detecting and tracking the rise of DGA-based malware. ; login:: the magazine of USENIX & SAGE. 2012;37(6):15-24.
- Bouveyron C, Brunet-Saumard C. Model-based clustering of high-dimensional data: A review. Computational Statistics & Data Analysis. 2014 Mar 1;71:52-78.
- Rényi A. On measures of entropy and information. InProceedings of the fourth Berkeley symposium on mathematical statistics and probability 1961 Jun 20 (Vol. 1, No. 547-561).
- Sidorov G, Velasquez F, Stamatatos E, Gelbukh A, Chanona-Hernández L. Syntactic n-grams as machine learning features for natural language processing. Expert Systems with Applications. 2014 Feb 15;41(3):853-60.
- Berger JO. Statistical decision theory and Bayesian analysis. Springer Science & Business Media; 2013 Mar 14.
- Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the american statistical association. 1937 Dec 1;32(200):675-701.
- Zadeh LA. Fuzzy sets. Information and control. 1965 Jun 1;8(3):338-53.
- Pedrycz W, Gomide F. An introduction to fuzzy sets: analysis and design. MIT press; 1998.
- Jain AK, Duin RP, Mao J. Statistical pattern recognition: A review. IEEE Transactions on pattern analysis and machine intelligence. 2000 Jan;22(1):4-37.
- Bezdek JC. Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media; 2013 Mar 13.
- Zhou SM, Gan JQ. Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling. Fuzzy sets and systems. 2008 Dec 1;159(23):3091-131.
- Shukla PK, Tripathi SP. A review on the interpretability-accuracy trade-off in evolutionary multi-objective fuzzy systems (EMOFS). Information. 2012 Jul 12;3(3):256-77.
- Shukla PK, Tripathi SP. A new approach for tuning interval type-2 fuzzy knowledge bases using genetic algorithms. Journal of Uncertainty Analysis and Applications. 2014 Dec;2(1):1-5.
- Shukla PK, Tripathi SP. Handling high dimensionality and interpretability-accuracy trade-off issues in evolutionary multiobjective fuzzy classifiers. Int. J. Sci. Eng. Res. 2014 Jun;5(6):665-71.
- Alonso JM, Castiello C, Mencar C. Interpretability of fuzzy systems: Current research trends and prospects. Springer handbook of computational intelligence. 2015:219-37.
- Alonso JM, Magdalena L. Special issue on interpretable fuzzy systems. Information Sciences. 2011 Oct 15;181(20):4331-9.
- Nauck D, Kruse R. Obtaining interpretable fuzzy classification rules from medical data. Artificial intelligence in medicine. 1999 Jun 1;16(2):149-69.
- Behret H, Korugan A. Performance analysis of a hybrid system under quality impact of returns. Computers & Industrial Engineering. 2009 Mar 1;56(2):507-20.
- Cho J, Jung Y, Lee S, Jung Y. Vlsi implementation of restricted coulomb energy neural network with improved learning scheme. Electronics. 2019 May 22;8(5):563.
- Grossberg S. Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world. Neural networks. 2013 Jan 1;37:1-47.
- Tsao EC, Bezdek JC, Pal NR. Fuzzy Kohonen clustering networks. Pattern recognition. 1994 May 1;27(5):757-64.
- Schwenker F, Kestler HA, Palm G. Three learning phases for radial-basis-function networks. Neural networks. 2001 May 1;14(4-5):439-58.
- Xia Y, Leung H, Wang J. A projection neural network and its application to constrained optimization problems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 2002 Apr;49(4):447-58.
- Svozil D, Kvasnicka V, Pospichal J. Introduction to multi-layer feed-forward neural networks. Chemometrics and intelligent laboratory systems. 1997 Nov 1;39(1):43-62.
- Prasad, R., Shukla, P.K. (2022). A Review on the Hybridization of Fuzzy Systems and Machine Learning Techniques. In: Bansal, J.C., Engelbrecht, A., Shukla, P.K. (eds) Computer Vision and Robotics. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-8225-4_32
- Gacto MJ, Alcalá R, Herrera F. Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures. Information Sciences. 2011 Oct 15;181(20):4340-60.
- Pulkkinen P, Hytönen J, Koivisto H. Developing a bioaerosol detector using hybrid genetic fuzzy systems. Engineering Applications of Artificial Intelligence. 2008 Dec 1;21(8):1330-46.
- Magdalena L. Semantic interpretability in hierarchical fuzzy systems: Creating semantically decouplable hierarchies. Information Sciences. 2019 Sep 1;496:109-23.
- Guo F, Liu J, Li M, Huang T, Zhang Y, Li D, Zhou H. A concise TSK fuzzy ensemble classifier integrating dropout and bagging for high-dimensional problems. IEEE Transactions on Fuzzy Systems. 2021 Aug 20;30(8):3176-90.
- KZhang S, Cheng D, Deng Z, Zong M, Deng X. A novel kNN algorithm with data-driven k parameter computation. Pattern Recognition Letters. 2018 Jul 15;109:44-54.
- Keller JM, Gray MR, Givens JA. A fuzzy k-nearest neighbor algorithm. IEEE transactions on systems, man, and cybernetics. 1985 Jul(4):580-5.
- Kotsiantis SB, Zaharakis I, Pintelas P. Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering. 2007 Jun 10;160(1):3-24.
- Maimon OZ, Rokach L. Data mining with decision trees: theory and applications. World scientific; 2014 Sep 3.