Inverse Operation of Four-dimensional Vector Matrix
Автор: H J Bao, A J Sang, H X Chen
Журнал: International Journal of Intelligent Systems and Applications(IJISA) @ijisa
Статья в выпуске: 5 vol.3, 2011 года.
Бесплатный доступ
This is a new series of study to define and prove multidimensional vector matrix mathematics, which includes four-dimensional vector matrix determinant, four-dimensional vector matrix inverse and related properties. There are innovative concepts of multi-dimensional vector matrix mathematics created by authors with numerous applications in engineering, math, video conferencing, 3D TV, and other fields.
Multidimensional vector matrix, four-dimensional vector matrix determinant, four-dimensional vector matrix inverse
Короткий адрес: https://sciup.org/15010220
IDR: 15010220
Список литературы Inverse Operation of Four-dimensional Vector Matrix
- Franklin, Joel L. [2000] Matrix Theory. Mineola, N.Y.: Dover.
- Ashu M.G. Solos. Multidimensional matrix mathematics: multidimensional matrix transpose, symmetry, ant symmetry, determinant, and inverse, part 4 of 6. Proceedings of the World Congress on Engineering 2010, vol.3, WEC 2010, June 30-July 2, 2010, London, U.K.
- Ahmed, N., Natarajan, T. and Rao, K. R. On image processing and a discrete cosine transform. IEEE Trans. Compute, l974, 23, 90–93.
- A J Sang, M S Chen, H X Chen, L L Liu and T N Sun. Multi-dimensional vector matrix theory and its application in color image coding. The Imaging Science Journal vol.58, no.3, June 2010, pp.171-176(6).
- Liu, L.L, Chen, H.X, Sang, A.J, Sun, T.N. “4D order-4 vector matrix DCT integer transform and its application in video code,” Imaging Science Journal, the vol. 58, no. 6, December 2010, pp.321-330 (10).
- I. Gessel and D. Stanton, Application of q-Lagrange inversion to basic hyper geometric series, Trans. Amer. Math. Soc. 277(1983), 173-203.
- Christian Krattenthaler and Michael Schlosser, “A New Multidimensional Matrix Inverse with Applications to Multiple q-series”, Discrete Mathematics, Volume 204, Issues 1-3, 6 June 1999, Pages 249-279.
- J. Riordan, Combinatorial identities, J. Wiley, New York, 1968.
- H.W. Gould, “A series transformation for finding convolution identities”, Duke Math.J.28 (1961), 193-202.
- H.W. Gould, “A new convolution formula and some new orthogonal relations for inversion of series”, Duke Math.J.29 (1962), 393-404.
- H.W. Gould, “A new series transform with application to Bessel, Legrende, and Tchebychev polynomials”, Duke Math. J. 31(1964), 325-334.
- H.W. Gould, “Inverse series relations and other expansions involving Humbert polynomials”, Duke Math.J.32 (1965), 691-711.
- H.W. Gould and L.C. Hsu, “Some new inverse series relations”, Duke Math.J.40 (1973), 885-891.
- G.E. Andrews, “Connection coefficient problems and partitions”, D. Ray- Chaudhuri, ed., Proc. Symp. Pure Math, vol.34, Amer. Math. Soc., Providence, R. I., 1979, 1-24.
- W.N. Bailey, “Some identities in combinatory analysis”, Proc. London Math. Soc. (2) 49 (1947), 421-435.
- W.N. Bailey, “Identities of the Roger-Ramanujan type”, Proc. London Math. Soc. (2) 50 (1949), 1-10.
- G. Gasper, “Summation, transformation and expansion formulas for bibasic series”, Trans. Amer. Soc. 312(1989), 257-278.
- M. Rahman, “Some quadratic and cubic summation formulas for basic hyper geometric series”, Can. J. Math. 45 (1993), 394-411.
- C. Krattenthaler, “A new matrix inverse”, Proc. Amer. Math. Soc. 124 (1996), 47-59.
- L. Carlitz, “Some inverse relations”, Duke Math. J. 40(1973), 893-901.