Inverse problem for a linearized quasi-stationary phase field model with degeneracy
Бесплатный доступ
The inverse problem for a linearized quasi-stationary phase field model is considered. The inverse problem is reduced to a linear inverse problem for the first order differential equation in a Banach space with a degenerate operator at the derivative and an overdetermination condition on the degeneracy subspace. The unknown parameter in the problem dependens on the source time function. The theorem of existence and uniqueness of classical solutions is proved by methods of degenerate operator semigroup theory at some additional conditions on the operator. General results are applied to the original inverse problem.
Inverse problem, phase field model, sobolev type equation, degenerate operator, operator semigroup, banach spaces
Короткий адрес: https://sciup.org/147159206
IDR: 147159206
Текст краткого сообщения Inverse problem for a linearized quasi-stationary phase field model with degeneracy
Preface
Let Q C R n be a bounded domain with a boundary д Q оf C^ class. T > 0. в, 5 € R-Consider the initial-boundary value problem
( в + A)( v ( x, 0) — v 0( x )) = 0 , x € Q ,
(1 — 5)v + 5—(x, t) = (1 — 5)w + 5—— (x, t) = 0, (x, t) € дQ x [0, T], ∂n ∂n for the system of equations vt(x, t) = Av(x, t) — Aw(x, t) + bi(x, t)u(t), (x, t) € Q x [0, T],
0 = v + (в + A)w + b2(x, t)u(t), (x, t) € Q x [0, T], with overdetermination condition on the subspace of degeneracy jK (У) w (y,t) dy = ф (t), (x,t) € Q x [0 ,T ].
Ω
Up to a linear change of functions v ( x,t ), w ( x,t ), the system coincides with the linearization of the quasistationary phase-field model, describing phase transitions of the first kind in terms of the mesoscopic theory. The unknown functions of the inverse problem (l)-(5) are v ( x,t ), w ( x,t ), u ( t ). The problem is investigated within the framework of a linear inverse problem for an abstract differential equation with a degenerate operator at the derivative, i.e. the Sobolev type equation.
Linear inverse problems for the Sobolev type equations were studied in [1, 2] with an unknown time-independent element u. Problems with an unknown time-dependent element u were considered in linear case in [3], and in nonlinear case in [4, 5]. However, an overdetermination operator, herewith, acted on the resolving Sobolev type equations semigroup image. In the present paper this operator acts on the semigroup kernel.
1. Statement of the abstract problem
Let X. Y and U be Banach spaces. Consider operators L E L ( X ; Y ) (i. e. linear and continuous) with ker L = { 0 }. M E Cl ( X ; Y ) (linear, closed and densely defined). Ф E L ( X ; U ). B E C 1([0 ,T ]; L ( U ; Y ))■ funeLions y E C 1([0 ,T ]; Y )• Ф E C 1([0 ,T ]; U ) and an element x 0 E Dm- Here Dm is a domain о £ the operator M. endowed with the graph norm ||x 0 || d m = ||x о Цд - + ll Mx о || y-
Theorem 1. [6] Let p E { 0 }U N, the operator M be strongly ( L,p^-radial. Then
-
(1) X = X 0 ®X 1 , Y = Y 0 ®Y 1;
-
(ii) a projector along X 0 on X 1 l,.along Y 0 оn Y 1) has the form
P = s- lim ( ^RL ( M )) p +1 , ( Q = s- lim ( ^LL ( M )) p +1);
-
ц^ + ^ ц ц^ +oo ц
(hi) QL = LP. QMx = MPx for all x E DM ;
-
(IV) Lk = L\xk E L ( Xk ; Yk ) , Mk = M \ d m ^k E Cl ( Xk ; Yk )■ k = 0 , 1;
-
(v) operators M— 1 E L ( Y 0; X 0) m id L— 1 E L ( Y 1; X 1) exist:
-
(vi) the operator H = M— 1 L 0 is nilpotent of a degree not greater, than p ;
-
(vii) there is a strongly continuous operators semigroup {V ( t ) E L ( X ) : t > 0 }, that resolves the equation. Lx(t ) = Mx ( t ).
While the operator M is strongly ( L,p )-radial, let us consider the inverse problem
Lx(t ) = Mx ( t ) + Bu ( t ) + y ( t ) , t E [0 , T ] ,
Px (0) = x 0 ,
Ф x ( t ) = ф( t ) , t e [0 ,T ] ,
which is to find a pair of functions x E C 1 ([0 , T ]; X ) O C ([0 , T ]; Dm ) and u E C 1 ([0 , T ]; U ), named as a solution.
Theorem 2. Let the operator M be strongly ( L,p)-radial, Ф E L ( X ; U ), Ф H = O. X 1 C кегФ. B E C 1([0 ,T ]; L ( U ; Y ))■ У E C 1([0 ,T ]; Y )■ ( I — Q ) У E Cp +1([0 ,T ]; Y )■ Ф E C 1([0 ,T ]; U ). the inverse operator (Ф M 0 1( I — Q ) B ( t )) — 1 exists for all t E [0 , T ] and (Ф M 0 1( I — Q ) B ) — 1 E C 1([0 , T ]; L ( U )), x 0 E Dm OX 1. Then there is a unique solution ( x ; u ) of the problem (6)-(8). It
has the form
t x (t) = V (t) x 0 + У K (t —
s ) L- 1 Q ( B ( s ) u ( s ) + y ( s )) ds—
—M— 1( I — Q ) B ( t ) u ( t ) — ]^ HkM— 1 (( I — Q ) y ( t ))( k ) , (9)
k =0
u ( t ) = — (Ф M— 1( I — Q ) B ( t )) - 1
( Ф( t ) + ^^ Ф HkM— 1(( I — k =0
Q ) y )( k )( t )j
and satisfies the following conditions:
|x|C !([0 ,T ]; д ) ^ c ( |Px 0 ^ D m + 1 Ф li e !([0 ,T ]; U ) + |y|CP +1([0 ,T ]; У )) , (11)
|u|C 1([0 ,T ]; U ) ^ c ( 1 Фli e 1([0 ,T ]; U ) + |y|e p +1([0 ,T ]; У )) , (12)
where a constant c > 0 does not ilepend on x 0. y. Ф.
Proof. Act with the operator Ф on the solution x of the direct problem (6), (7) with the known element u. Then
Ф x ( t ) = Ф( I - P ) x ( t ) = - Ф M- 1( I - Q ) B ( t ) u ( t ) - £ Ф HkM- 1 (( I - Q ) y )( k )( t ) = Ф( t ) (13) k =0
lor all t E [0 , T ] due I,о the overdetermiimtion condition (8). the conditions X 1 С кегФ. Ф H = O and the form of x (see [6, 7]). Thus, the formula (10) holds.
The formula (9) is obtained in [6], when u is unknown. At the same time the equality (13) is taken into account. Estimates (11), (12) follow from (9), (10) and an operator semigroup {E ( t ) E L ( X ) : t > 0 } exponential growth.
□
2. Inverse problem for a linearized quasi-stationary phase field model
Reduce the problem (l)-(5) to (6)-(8). To do this,let us assume X = Y = ( L 2(Q))2 , U = R ,
L =(O O) - M =( II - +а) - B ( t )=( l 2( ::t )) - " t )= * ( t ) ,
H 2(Q) = hh E H2(H) : QdL + (1 - 5 )) h ( x ) = 0 , x e d Q} ,
DM = ( H 2(Q))2. Thereby. L E L ( X ) , M E Cl ( X ) , ker L = { 0 }.
Denote Aw = Aw, Da = H2(Q) С L2(Q). Let {pk : k E N} be orthonormal (in the sense of the scalar product (•, •) in L2(Q)) eigenfunctions of the operator A, numbered in decreasing eigenvalues {Xk : k E N}, counting multiplicities. Let -в E a (A). de fine 5k = (в + Xk) 1( в + 1 + Xk)Xk. f<)r Xk = -в- Using the exparision in the basis {pk : k E N} in a space L2(Q). determine operators
( rL ( M ))2 =
E
A k = -
b,V k iV k ( Г '^ k )2
E
^ k = — в
T V k /V k
( в + ^ k )( Ц-S k )2
O
O
( E U V k lV k
A k = -g ( ^-5 k )2 O
E
A k = — в
A k V,W }V k
( в + A k )( Ц-S k )2
O
Hence, considering the Hilbert spaces X, Y , we obtain the strong ( L, 1)-radiality of the operator
M [6]. By formulas P = s lim ( ^RL ( M ))2, Q = s- lim ( ^LL ( M ))2 we derive the projectors Ц^ + ^ ^ ц^ + ^ ^
P =
E (•,Uk^Pk
A k = -в
- E
A k = — в
(•,V k )V k в + A k
O / E (•-Pk ^Pk
I , Q = A k = -g
OO
E
A k = — в
A k (^,V k ^V k в + A k
O
Theorem 3. Let. -в E a ( A ). K E L 2(H). (K,pk) = 0 jtrr Xk = -в- bi E C 1([0 ,T ]; L 2(H)). i = 1 , 2. and (b 1 ( •-t ) ,pk) = 0 Jtrr Xk = -в- (K,b 2( •-t ) ) = 0 for all t E [0 ,T ]. * E C 1 [0 ,T ]. v 0 E Hl2(QY Then there exists a unique solution of the problem (l)-(5).
Proof. To prove this theorem it is sufficient to verify the conditions of Theorem 2.
□
Список литературы Inverse problem for a linearized quasi-stationary phase field model with degeneracy
- Уразаева, А.В. Задачи прогноз-управления для некоторых уравнений гидродинамики/А.В. Уразаева, В.Е. Федоров//Дифференциальные уравнения. -2008. -Т. 44, № 8. -С. 1111-1119.
- Уразаева, А.В. О корректности задачи прогноз-управления для некоторых систем уравнений/А.В. Уразаева, В.Е. Федоров//Математические заметки. -2009. -Т. 85, вып. 3. -С. 440-450.
- Федоров, В.Е. Линейная эволюционная обратная задача для уравнений соболевского типа/В.Е. Федоров, А.В. Уразаева//Неклассические уравнения математической физики. -Новосибирск: Изд-во Ин-та математики им. С.Л.Соболева СО РАН, 2010. -С. 293-310.
- Федоров, В.Е. Нелинейная эволюционная обратная задача для некоторых уравнений соболевского типа/В.Е. Федоров, Н.Д. Иванова//Сибирские электронные математические известия. Т. 8. Труды второй международной школы-конференции. Ч.I. Теория и численные методы решения обратных и некорректных задач. 2011. С. 363-378. -URL: http://semr.math.nsc.ru/v8/c182-410.pdf (дата обращения: 08.02.2013).
- Иванова, Н.Д. Нелинейная обратная задача для системы Осколкова, линеаризованной в окрестности стационарного решения/Н.Д. Иванова, В.Е. Федоров, К.М. Комарова//Вестник Челябинского государственного университета. Математика. Механика. Информатика. -2012. -Вып. 13, № 26 (280). -С. 50-71.
- Федоров, В.Е. Вырожденные сильно непрерывные полугруппы операторов/Алгебра и анализ.-2000. -Т. 12, № 3. -С.173-200.
- Sviridyuk, G.A. Linear Sobolev Type Equations and Degenerate Semigroups of Operators/G.A. Sviridyuk, V.E. Fedorov. -Utrecht; Boston; Köln: VSP, 2003.