Inverse problems for mathematical models of quasistationary electromagnetic waves in anisotropic nonmetallic media with dispersion

Бесплатный доступ

We consider inverse problems of evolution type for mathematical models of quasistationary electromagnetic waves. It is assumed in the model that the wave length is small as compared with space inhomogeneities. In this case the electric and magnetic potential satisfy elliptic equations of second order in the space variables comprising integral summands of convolution type in time. After differentiation with respect to time the equation is reduced to a composite type equation with an integral summand. The boundary conditions are supplemented with the overdetermination conditions which are a collection of functionals of a solution (integrals of a solution with weight, the values of a solution at separate points, etc.). The unknowns are a solution to the equation and unknown coefficients in the integral operator. Global (in time) existence and uniqueness theorems of this problem and stability estimates are established.

Еще

Sobolev-type equation, equation with memory, elliptic equation, inverse problem, boundary value problem

Короткий адрес: https://sciup.org/147159471

IDR: 147159471   |   DOI: 10.14529/mmp180105

Список литературы Inverse problems for mathematical models of quasistationary electromagnetic waves in anisotropic nonmetallic media with dispersion

  • Свешников, А.Г. Линейные и нелинейные уравнения cоболевского типа/А.Г. Свешников, А.Б. Альшин, М.О. Корпусов, Ю.Д. Плетнер. -М.: Физматлитература, 2007.
  • Габов, С.А. Линейные задачи теории нестационарных внутренних волн/С.А. Габов, А.Г. Свешников. -М.: Наука, 1990.
  • Lorenzi, A. Direct and Inverse Problems in the Theory of Materials with Memory/A. Lorenzi, I. Paparone//Rendiconti del Seminario matematico della Universita di Padova. -1992. -V. 87. -P. 105-138.
  • Janno, J. Inverse Problems for Identification of Memory Kernels in Viscoelasticity/J. Janno, L. Von Wolfersdorf//Mathematical Methods in the Applied Sciences. -1997. -V. 20. -P. 291-314.
  • Durdiev, D.K. Inverse Problem of Determining the One-Dimensional Kernel of the Viscoelasticity Equation in a Bounded Domain/D.K. Durdiev, Zh.Sh. Safarov//Mathematical Notes. -2015. -V. 97, № 6. -P. 867-877.
  • Colombo, F. An Inverse Problem for a Phase-Field Model in Sobolev Spaces. Nonlinear Elliptic and Parabolic Problems/F. Colombo, D. Guidetti//Progress in Nonlinear Differential Equations and Their Applications. -V. 64. -Basel: Birkhäuser Verlag, 2005. -P. 189-210.
  • Guidetti, D. A Mixed Type Identification Problem Related to a Phase-Field Model with Memory/D. Guidetti, A. Lorenzi//Osaka Journal of Mathematics. -2007. -V. 44. -P. 579-613.
  • Colombo, F. A Global in Time Existence and Uniqueness Result for a Semilinear Integrodifferential Parabolic Inverse Problem in Sobolev Spaces/F. Colombo, D. Guidetti//Mathematical Models and Methods in Applied Sciences. -2007. -V. 17, № 4. -P. 537-565.
  • Коломбо, Ф. О некоторых методах решения интегрально-дифференциальных обратных задач параболического типа/Ф. Коломбо//Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. -2015. -Т. 8, № 3. -С. 95-115.
  • Favini, A. Identication Problems for Singular Integro-Differential Equations of Parabolic Type/A. Favini, A. Lorenzi//Nonlinear Analysis. -2004. -V. 56, 6. -P. 879-904.
  • Lorenzi, A. Inverse and Direct Problems for Nonautonomous Degenerate Integro-Differential Equations of Parabolic Type with Dirichlet Boundary Conditions/A. Lorenzi, H. Tanabe//Differential Equations: Inverse and Direct Problems. Lecture Notes in Pure and Applied Mathematics. -Boca Raton, London, N.Y.: Chapman and Hall/CRC Taylor and Francis Group, 2006. -V. 251. -P. 197-244.
  • Abaseeva, N. Identification Problems for Nonclassical Integro-Differential Parabolic Equations/N. Abaseeva, A. Lorenzi//Journal of Inverse and Ill-Posed Problems. -2005. -V. 13, № 6. -P. 513-535.
  • Асанов, А. Обратная задача для операторного интегро-дифференциального псевдопараболического уравнения/А. Асанов, Э.Р. Атаманов//Сибирский математический журнал. -1995. -Т. 36, № 4. -С. 752-762.
  • Avdonin, S.A. Inverse Problems for the Heat Equation with Memory/S.A. Avdonin, S.A. Ivanov, J. Wang. -2017. -10 p. -URL: https://arxiv.org/abs/1612.02129 (дата обращения: 9 февраля 2018 г.)
  • Pandolfi, L. Identification of the Relaxation Kernel in Diffusion Processes and Viscoelasticity with Memory via Deconvolution/L. Pandolfi. -2016. -15 p. -URL: https://arxiv.org/abs/1603.04321 (дата обращения: 9 февраля 2018 г.)
  • Денисов, А.М. Обратная задача для квазилинейного интегро-дифференциального уравнения/А.М. Денисов//Дифференциальные уравнения. -2001. -Т. 37, № 10. -C. 1350-1356.
  • Triebel, H. Interpolation Theory. Function Spaces. Differential Operators/H. Triebel. -Berlin: VEB Deutscher Verlag der Wissenschaften, 1978.
  • Ладыженская, О.А. Линейные и квазилинейные уравнения эллиптического типа/О.А. Ладыженская, Н.Н. Уральцева. -М.: Наука, 1973.
  • Гилбарг, Д. Эллиптические дифференциальные уравнения с частными производными второго порядка/Д. Гилбарг, Н. Трудингер. -М.: Наука, 1989.
  • Maugeri, A. Elliptic and Parabolic Equations with Discontinuous Coefficients/A. Maugeri, D.K. Palagachev, L.G. Softova. -Berlin: Wiley-VCH Verlag, 2000.
Еще
Статья научная