Investigation of the Er-Sb-Te system
Автор: Mamadova S.H., Sadigov F.M., Ismailov Z.I., Kim K.B., Niftaliyev S.I.
Журнал: Вестник Воронежского государственного университета инженерных технологий @vestnik-vsuet
Рубрика: Химическая технология
Статья в выпуске: 3 (101) т.86, 2024 года.
Бесплатный доступ
Methods of physicochemical analysis, namely differential thermal analysis (DTA), high temperature differential thermal analysis (HTTA), X-ray phase analysis (XRD), microstructural analysis (MSA) and microhardness measurements are used to determine the nature of the physicochemical interaction in the Er-Sb-Te ternary system.. Phase diagrams of the following quasi-binary Er2Te3-Sb2Te3, ErTe-Sb2Te3, ErTe-SbTe, ErTe-Sb and non-quasi-binary Er-Sb2Te3, D (ErSb3Te5,5)-Te sections are presented for the first time. It has been established that at a component ratio of 1:1 in the Er2Te3-Sb2Te3 system, a new ternary phase with the composition ErSbTe3 is formed, which crystallizes in the hexagonal syngony with unit cell parameters: a=0.408; c=3.045 nm. In the system based on Sb2Te3, solid solutions are formed, the boundaries of which are up to 3 mol% Er2Te3 at room temperature, and at the eutectic temperature it reaches about 8 mol% Er2Te3. The ternary combination of ErSbTe3 with an α-solid solution forms a eutectic, the coordinates of which are 20 mol % Er2Te3 and 800 K. The liquidus of the ErTe-Sb2Te3 system consists of two branches of primary crystallization of an α-solid solution based on Sb2Te3 and an Er2Te3 compound. In the ErTe-Sb2Te3 section, a region of homogeneity is also formed based on Sb2Te3 up to 5 mol % ErTe. The system state diagram is of the simple eutectic type. Eutectic coordinates 25 mol% ErTe and 850K. In the ErSb - ErTe and Sb - ErTe systems, no new ternary phases and homogeneity regions have been found. Eutectic coordinates in the ErSb - ErTe system; 50mol % ErTe and 1200K, and in the second system (Sb - ErTe) a degenerate eutectic is observed (at 900K). The cut Sb2Te3-Er intersects three, and D-Te two subordinate triangles. In both systems, ternary eutectic and peritectic invariant reactions occur at different temperatures. A projection of the liquidus surface of the Er-Sb-Te ternary system is also constructed, which consists of fourteen fields of primary crystallization of phases, separated by 25 monovariant equilibrium curves. Monovariant curves intersect at 11 nonvariant points, five of which are eutectic and six are peritectic.
Phase diagram, ternary system, phase equilibrium, quasi-binary, non-quasi-binary sections, solid solutions, liquidus of the system, crystallization of phases
Короткий адрес: https://sciup.org/140308565
IDR: 140308565 | DOI: 10.20914/2310-1202-2024-3-209-216
Список литературы Investigation of the Er-Sb-Te system
- Baghbanzadeh-Dezfuli B., Jamali-Sheini F., Cheraghizade M. Sonical deposition of nanostructured Sb2 Se3 films for optoelectronic applications. Journal of Alloys and Compounds. 2021. vol. 85. no. 1. pp. 157308. https://doi.org/10.1016/j.jallcom.2020.157308
- Wang F.K., Yang S.J., Zhai T.Y. 2D Bi2 Se3 materials for optoelectronics. IScience. 2021. vol. 24. no. 11. pp. 103291. https://doi.org/10.1016/j.isci.2021.103291
- Ghosh S., Moreira M.V.B., Fantini C., González J.C. Growth and optical properties of nanocrystalline Sb2 Se3 thin-films for the application in solar-cells. Solar Energy. 2020. vol. 211. pp. 613-621. https://doi.org/10.1016/j.solener.2020.10.001
- Nolas G.S., Sharp J., Goldsmid J. Thermoelectrics: basic principles and new materials developments. Springer Science & Business Media, 2013. vol. 45. https://doi.org/10.1007/978-3-662-04569-5
- Goldsmid H.J. Bismuth telluride and its alloys as materials for thermoelectric generation. Materials. 2014. vol. 7. no. 4. pp. 2577-2592. https://doi.org/10.3390/7042577
- Scherrer H., Scherrer S. Bismuth telluride, antimony telluride, and their solid solutions. CRC Handbook of thermoelectrics. CRC Press, 2018. pp. 211-238.
- Yang W., Kim J.H., Hutter O.S. Benchmark performance of low-cost Sb2 Se3 photocathodes for unassisted solar overall water splitting. Nature Communications. 2020. vol. 11. no. 1. pp. 861. https://doi.org/10.1038/s41467-020-14704-3
- Sankapal B.R., Lokhande, C.D. Photoelectrochemical characterization of Bi2Se3 thin films deposited by SILAR technique. Materials Chemistry and Physics. 2002. vol. 73. no. 2-3. pp. 151-155. https://doi.org/10.1016/s0254-0584(01)00362-5
- Li W., Deng L., Wang X., Cao J. et al. Close-spaced thermally evaporated 3D Sb2 Se3 film for high-rate and high-capacity lithium-ion storage. Nanoscale. 2021. vol. 13. no. 21. pp. 9834-9842. https://doi.org/10.1039/d1nr01585k
- Xue M.-Z., Fu Z.-W. Pulsed laser deposited Sb2 Se3 anode for lithium-ion batteries. J. Alloys Compd. 2008. vol. 458. pp. 351-356. https://doi.org/10.1016/j.jallcom.2007.03.109
- Zhang H., Liu C.-X., Qi X.-L., Dai X. et al. Topological insulators in Bi2 Se3, Bi2 Te3 and Sb2 Te3 with a single Dirac cone on the surface. Nature Physics. 2009. vol. 5. pp. 438-442.
- Mazumder K., Shirage P.M. A brief review of Bi2 Se3 based topological insulator: From fundamentals to applications. Journal of Alloys and Compounds. 2012. vol. 888. no. 25. pp. 161492. https://doi.org/10.1016/j.jallcom.2021.161492
- Anversa J., Chakraborty S., Piquini P., Ahuja R. High pressure driven superconducting critical temperature tuning in Sb2 Se3 topological insulator. Appl. Phys. Lett. 2016. vol. 108. pp. 212601. https://doi.org/10.1063/1.4950716
- Zhang K., Xu M., Li N., Xu M. et al. Superconducting Phase Induced by a Local Structure Transition in Amorphous Sb2Se3 under High Pressure. Phys. Rev. Lett. 2021. vol. 127. no. 12. pp. 127002. https://doi.org/10.1103/PhysRevLett.127.127002
- Ioffe A.F. Semiconductor Thermoelements and Thermoelectric Cooling. A.F. Ioffe. London, Infosearch Limited, 1957. 1923p.
- Suh J., Yu K.M, Fu D., Liu X. et al. Simultaneous enhancement of electrical conductivity and thermopower of Bi2 Te3 by multifunctionality of native defects. Adv. Mater. 2015. vol. 27. no. 24. pp. 3681-3686. https://doi.org/10.1002/adma.201501350
- Shchurova M.A., Andreev O.V., Kuznetsova A.V. Electrophysical properties of the BI2-X SE3-X-X SMSE alloys as thermoelectric converter of n-type. Tyumen state university herald. 2013. vol. 5. pp. 82-87.
- Yapryntsev M., Vasiliev A., Ivanov O. Sintering temperature effect on thermoelectric properties and microstructure of the grained Bi1.9Gd0.1Te3 compound. J. Eur. Ceram. Soc. 2019. vol. 39. no. 4. pp. 1193-1205. https://doi.org/10.1016/j.jeurceramsoc.2018.12.041
- Ivanov O., Yaprintsev M., Lyubushkin R., Soklakova O. Enhancement of thermoelectric efficiency in Bi2 Te3 via rare earth element doping. Scr. Mater. 2018. vol. 146. pp. 91-94. https://doi.org/10.1016/j.scriptamat.2017.11.031Get rights and content
- Yaprintsev M., Lyubushkin R., Soklakova O., Ivanov O. Effects of Lu and Tm doping on thermoelectric properties of Bi2 Te3. J. Electron. Mater. 2018. vol. 47. no. 2. pp. 1362-1370. https://doi.org/10.1007/s11664-017-5940-8
- Ivanov O., Yaprintsev M. Mechanisms of thermoelectric efficiency enhancement in Lu-doped Bi2 Te3. Mater. Res. Express. 2018. vol. 5. no. 1. pp. 1-10. https://doi.org/10.1088/2053-1591/aaa265
- Yapryntsev M.N., Lyubushkin R.A., Soklakova O.N. Synthesis and electrical properties of Bi2Te3-based thermoelectric materials doped with Er, Tm, Yb, and Lu. Semiconductors. 2017. vol. 51. no. 6. pp. 710-713. https://doi.org/10.1134/S106378261706029X
- Yang J.J., Wu F.F., Zhu Z.Z., Yao L.L. et al. Thermoelectrical properties of lutetium-doped Bi2 Te3 bulk samples prepared from flower-like nanopowders. J. Alloys Compd. 2015. vol. 619. pp. 401-405. https://doi.org/10.1016/J.JALLCOM.2014.09.024
- Singh N., Schwingenschlogl U. LaBiTe3: An unusual thermoelectric material. Phys. Status RRI. 2014. vol. 8. no. 9. pp. 805-808. https://doi.org/10.1002/pssr.201409110
- Lin. J., Vanderbilt D. Weyl semimetals from noneentrosymmetric topological insulators. Physical Review B. 2014. vol. 90. no. 15. pp. 155-316. https://doi.org/10.1103/PhysRevB.90.155316
- Li Zh., Si Ch., Zhou J., Xu H. et al. Yttrium-Doped Sb2 Te3: A Promising Material for Phase-Change Memory. ACS Appl. Mater. Interfaces. 2016. vol. 8. no. 39. pp. 26126-26134. https://doi.org/10.1021/acsami.6b08700
- Yaprintseva M., Vasil’eva A., Ivanova O. Thermoelectric properties of the textured Bi1.9Gd0.1Te3 compounds sparkplasma-sintered at various temperature. Journal of the European Ceramic Society. 2020. vol. 40. no. 3. pp. 742-775. https://doi.org/10.1016/j.jeurceramsoc.2019.11.028
- Yarembash E.I., Eliseev A.A. Chalcogenides of rare earth elements. M, Nauka, 1975, 260 p.
- Ghosh G. The Sb-Te (Antony-Tellurium) system. Journal of Phaze Equilibria. 1994. vol. 15. pp. 349-360.
- Eckerbin V.P., Stegher A. On the phases in the Sb-Te system. Acta Crystallo-graphica. 1966. vol. 2. pp. 78.
- Brown A., Liewis B. The systems bismuth-tellurium and antimony - tellurium and synthesis of the antimony - tellurium and the synthesis of the minerals hedleyite and wehrlite. Journal of Physics and Chemistry of Solids. 1962. vol. 23. pp. 1597-1604.
- Sadigov F.M., Alizade N.M., Ismailov Z.I. Nature of chemical interaction in the ternal system Er-Bi (Sb) - Se. Eurasian Union of Scientists. 2021. vol. 1. pp. 82.
- Sadigov F.M., Mammadova S.H., Ismayilov Z.I. State diagram of Er-Sb system. Ganja. 2022. pp. 85-87.
- Lyakisheva N.P. State diagrams of binary metal systems. Handbook M., Mechanical Engineering, 1997. 1023 p. (in Russian).