Iodonium polyiodide crystals in the framework of periodic calculations with localized atomic basis sets

Бесплатный доступ

Methodological features of the crystal structure modeling for compounds with three-center halogen bond formed by two electron donors S-I+-S in polyiodide crystals were considered within the framework of periodic calculations based on localized atomic orbitals. The analysis of applying the different basis sets, effective core potentials, density functional theory functionals, and Grimme dispersion corrections revealed their effect on the geometric, electronic and vibrational properties obtained in calculations. Distribution of S-I bond lengths in S-I+-S fragment was analyzed. The effect of hybrid functional was demonstrated in the significant elongation of S-I distance. The treatment of dispersion interactions via Grimme approach did not significantly influence obtained results. The calculated vibration modes in medium wavenumber region of characteristic cationic stretching vibrations were validated according to experimental Raman spectra and were found to be in good agreement for C-N, C-C and C=S stretching vibrations. Small-core effective potential was shown to be effective for representation of bond lengths in S-I+-S fragment and gave reasonable results for vibrational data for cationic stretching vibrations. Taking into account relativistic effect on the level of basis set led to fine reproducibility of S-I bond lengths although in polyiodides of complex structure it should be treated with caution due to possible incorrect representation of interanionic distances.

Еще

Iodonium salt, three-center halogen bond, periodic dft calculations, localized atomic basis set, polyiodide, raman spectroscopy

Короткий адрес: https://sciup.org/147234265

IDR: 147234265   |   DOI: 10.14529/chem200407

Список литературы Iodonium polyiodide crystals in the framework of periodic calculations with localized atomic basis sets

  • Yoshimura A., Zhdankin V.V. Advances in Synthetic Applications of Hypervalent Iodine Compounds. Chem. Rev., 2016, vol. 116, no. 5, pp. 3328—3435. DOI: 10.1021/acs.chemrev.5b00547.
  • Zhdankin V.V, Stang P.J. Alkynyliodonium Salts in Organic Synthesis. Tetrahedron, 1998, vol. 54, no. 37, pp. 10927—10966. DOI: 10.1016/S0040-4020(98)00410-4.
  • Turunen L., Erdelyi M. Halogen Bonds of Halonium Ions. Chem Soc Rev., 2020, vol. 49, pp. 2688—2700. DOI: 10.1039/d0cs00034e.
  • Karim A., Reitti M., Carlsson A.-C.C., Grafenstein J., Erdelyi M. The Nature of [N—Cl—N]+ and [N— F—N]+ Halogen Bonds in Solution. Chem. Sci, 2014, vol. 5, pp. 3226—3233. DOI: 10.1039/C4SC01175A.
  • Lindstedt E., Reitti M., Olofsson B. One-Pot Synthesis of Unsymmetric Diaryliodonium Salts from Iodine and Arenes. J. Org. Chem., 2017, vol. 82, no. 22, pp. 11909—11914. DOI:10.1021/acs.joc.7b01652.
  • Carlsson A.C., Mehmeti K., Uhrbom M., Karim A., Bedin M., Puttreddy R., Kleinmaier R., Ne-verov A.A., Nekoueishahraki B., Grafenstein J., Rissanen K., Erdelyi M. Substituent Effects on the [N— I—N]+ Halogen Bond. J. Am. Chem. Soc, 2016, vol. 138, no. 31, pp. 9853—9863. DOI: 10.1021/jacs.6b03842.
  • Tamilselvi A., Mugesh G. Interaction of Heterocyclic Thiols/thiones Eliminated from Cephalosporins with Iodine and its Biological Implications. Bioorg. Med. Chem. Lett., 2010, vol. 20, no. 12, pp. 3692—3697. DOI: 10.1016/j.bmcl.2010.04.087.
  • Corban G. J., Hadjikakou S.K., Hadjiliadis N., Kubicki M., Tiekink E.R.T., Butler I.S., Drougas E., Kosmas A.M. Synthesis, Structural Characterization and Computational Studies of Novel Diiodine Adducts with the Heterocyclic Thioamides N-methylbenzothiazole-2-thione and Benzimidazole-2-thione: Implications with the Mechanism of Action of Antithyroid Drugs. Inorg. Chem., 2005, vol. 44, no. 23, pp. 8617—8627. DOI: 10.1021/ic0484396.
  • Yushina I., Tarasova N., Kim D., Sharutin V., Bartashevich E. Noncovalent Bonds, Spectral and Thermal Properties of Substituted Thiazolo[2,3-b][1,3]thiazinium Triiodides. Crystals, 2019, vol. 9, no. 10, 506. DOI: 10.3390/cryst9100506.
  • Bartashevich E.V., Batalov V.I., Yushina I.D., Stash A.I., Chen Y.S. Nontypical Iodine-halogen Bonds in the Crystal Structure of (3E)-8-chloro-3-iodomethylidene-2,3-dihydro-1,4-oxazino[2,3,4-ij]quinolin-4-ium Triiodide. Acta Crystallogr. Sect. C Struct. Chem., 2016, vol. 72, no. 4, pp. 341—345. DOI: 10.1107/S2053229616003934.
  • Yushina I.D., Kolesov B.A., Bartashevich E.V. Raman Spectroscopy Study of New Thia- and Oxazinoquinolinium Triodides. New J. Chem., 2015, vol. 39, no. 8, 2015, pp. 6163—6170. DOI: 10.1039/c5nj00497g.
  • Yushina I.D., Batalov V.I., Bartashevich E.V., Davydov A.O., Zelenovskiy P.S., Masunov A.E. Raman Spectroscopy and Theoretic Study of Hyperpolarizability Effect in Diiodobutenyl-6is-thioquinolinium Triiodide at Low Temperature. J. Raman Spectrosc., 2017, vol. 48, no. 11, pp. 1411— 1413. DOI: 10.1002/jrs.5159.
  • Bartashevich E., Mukhitdinova S., Yushina I., Tsirelson V. Electronic Criterion for Categorizing the Chalcogen and Halogen Bonds: Sulfur-Iodine Interactions in Crystals. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater., 2019, vol. 75, no. 2, pp. 117-126. DOI: 10.1107/S2052520618018280.
  • Bartashevich E., Yushina I., Kropotina K., Muhitdinova S., Tsirelson V. Testing the Tools for Revealing and Characterizing the Iodine-iodine Halogen Bond in Crystals. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater., 2017, vol. 73, no. 2, pp. 217-226. DOI: 10.1107/S2052520617002931.
  • Sharp S.B, Gellene G.I. Ab Initio Calculations of the Ground Electronic States of Polyiodide Anions. J. Phys. Chem. A., 1997, vol. 101, no. 11, pp. 2192-2197. DOI: 10.1021/jp962755r.
  • Mizuno M., Tanaka J., Harada I. Electronic Spectra and Structures of Polyiodide Chain Complexes. J. Phys. Chem., 1981, vol. 85, no. 13, pp. 1789-1794. DOI: 10.1021/j 150613a006.
  • Savin A. A Combined Density Functional and Configuration Interaction Method. Int. J. Quantum Chem, 1988, vol. 12, no. 19, pp. 59-69. DOI: 10.1002/qua.560340811.
  • Zicovich-Wilson C.M., Pascale F., Roetti C., Saunders V.R. The Calculation of the Vibration Frequencies of a-quartz: the Effect of Hamiltonian and Basis Set. J. Comput. Chem., 2004, vol. 25, no. 15, pp. 1873-1881. DOI: 10.1002/jcc.20120.
  • Maschio L., Kirtman B., Rerat M., Orlando R., Dovesi R. Ab Initio Analytical Raman Intensities for Periodic Systems through a Coupled Perturbed Hartree-Fock/Kohn-Sham Method in an Atomic Orbital Basis. II. Validation and Comparison with Experiments. J. Chem. Phys., 2013. vol. 139, 164102. DOI: 10.1063/1.4824443.
  • Douglas М., Kroll N.M. Quantum Electrodynamical Corrections to Fine-structure of Helium. Ann. Phys., 1974, vol. 82, no. 1, pp. 89-155. DOI: 10.1016/0003-4916(74)90333-9.
  • Hess B.A. Relativistic Electronic-structure Calculations Employing a Two-component No-pair Formalism with External-field Projection Operators. Phys. Rev. A., 1986, vol. 33, pp. 3742-3748. DOI: 10.1103/PhysRevA.33.3742.
  • Pyykko Р. Relativistic Effects in Structural Chemistry. Chem. Rev., 1988, vol. 88, no. 3, pp. 563-594. DOI: 10.1021/cr00085a006.
  • Neuhaus А., Veldkamp V., Frenking G. Oxo and Nitrido Complexes of Molybdenum, Tungsten, Rhenium and Osmium. A Theoretical Study. Inorg. Chem., 1994, vol. 33, no. 23, pp. 52785286. DOI: 10.1021/ic00101a020.
  • Dovesi R., Saunders V.R., Roetti C., Orlando R., Zicovich-Wilson C.M., Pascale F., Civalleri B., Doll, K., Harrison N.M., Bush I.J., D'Arco P., Llunell M., Causà M., Noël Y., Maschio L., Erba A., Rerat M., Casassa S. CRYSTAL17 User's Manual (University of Torino, Torino, 2017).
  • Grimme S., Antony J., Ehrlich S., Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys., 2010, vol. 132, no. 15, p. 154104. DOI: 10.1063/1.3382344.
  • Grimme S. Semiempirical GGA-type Density Functional Constructed with a Long-range Dispersion Correction. J. Comput. Chem., 2006, vol. 27, no. 15, pp. 1787-1799. DOI: 10.1002/jcc.20495.
  • Barros C.L., de Oliveira P.J.P., Jorge F.E., Canal Neto A., Campos M. Gaussian Basis Set of Double Zeta Quality for Atoms Rb through Xe: Application in Non-relativistic and Relativistic Calculations of Atomic and Molecular Properties. Mol. Phys., 2010, vol.108, no. 15, pp. 1965-1972. DOI: 10.1080/00268976.2010.499377.
  • Peterson K.A., Shepler B.C., Figgen D., Stoll H. On the Spectroscopic and Thermochemical Properties of ClO, BrO, IO, and Their Anions. J. Phys. Chem. A, 2006, vol. 110, no. 51, pp. 1387713883. DOI: 10.1021/jp065887l.
  • Peintinger M.F., Oliveira D.V., Bredow T. Consistent Gaussian Basis Sets of Triple-Zeta Valence with Polarization Quality for Solid-State Calculations. J. Comput. Chem., 2012, vol. 34, no. 6, pp. 451-459. DOI: 10.1002/jcc.23153.
  • Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. The Cambridge Structural Database. Acta Cryst., 2016, vol. B72, pp. 171-179. DOI: 10.1107/S2052520616003954.
  • Demartin F., Deplano P., Devillanova F.A., Isaia F., Lippolis V., Verani G. Conductivity, FT-Raman Spectra and X-Ray Crystal Structures of Two Novel [D2I]In (n = 3 and D = N-methylbenzothiazole-2(3#)-selone; n = 7 and D = N-methylbenzothiazole-2(3#)-thione) Iodonium Salts. First example of I-.3I2 Heptaiodide. Inorg. Chem., 1993, vol. 32, no. 7, pp. 3694-3699. DOI: 10.1021/ic00069a025.
  • Corban G.J., Hadjikakou S.K., Tsipis A.C., Kubicki M., Bakas T., Hadjiliadis N. Inhibition of Peroxidase-catalyzed Iodination by Thioamides: Experimental and Theoretical Study of the Antithyroid Activity of Thioamides. New J. Chem., 2011, vol. 35, no. 1, pp. 213-224. DOI: 10.1039/c0nj00626b.
  • Chemov'yants M.S., Burykin I.V., Starikova Z.A., Erofeev N.E. Synthesis, Spectroscopic and Structural Characterization of Novel Interaction Product of 5-trifluoromethyl-pyridine-2-thione with Iodine. J. Mol. Struct., 2011, vol. 1006, no. 1-3, pp. 379-382. DOI: 10.1016/j.molstruc.2011.09.035.
  • Lin G.H.-Y., Hope H. The Crystal Structure of 6is(thiourea)iodine(I) Iodide. Acta Crystallo-graphica, Section B: Struct. Crystallogr. Cryst. Chem., 1972, vol. 28, pp. 643-646. DOI: 10.1107/S0567740872002900.
  • Boyle P.D., Christie J., Dyer T., Godfrey S.M., Howson I.R., McArthur C., Omar B., Pritchard R.G., Williams G.Rh. Further Structural Motifs from the Reactions of Thioamides with Diiodine and the Interhalogens Iodine Monobromide and Iodine Monochloride: an FT-Raman and Crystallographic Study. J. Chem. Society, Dalton Transactions, 2000, pp. 3106-3112. DOI: 10.1039/b004182n.
  • Koskinen L., Hirva P., Kalenius E., Jääskeläinen S., Rissanen K., Haukka M. Halogen Bonds with Coordinative Nature: Halogen Bonding in a S-I+-S Iodonium Complex. CrystEngComm, 2015, vol. 17, 1231-1236. DOI: 10.1039/C4CE01735H.
  • Chernov'yants M.C., Aleshina N.V., Starikova Z.A., Sul'zhenko E.N. The Study of Interaction of 5-methyl-1,3,4-thiadiazoline-2-thione with Diiodine. Izvestiya Akademii Nauk, Seriya Khimi-cheskaya, 2010, pp. 1750.
  • Daga V., Hadjikakou S.K., Hadjiliadis N., Kubicki M., dos Santos J.H.Z., Butler I.S. Synthesis, Spectroscopic and Structural Characterization of Novel Diiodine Adducts with the Heterocyclic Thioamides, Thiazolidine-2-thione (tzdtH), Benzothiazole-2-thione (bztzdtH) and Benzimidazole-2-thione (bzimtH). Eur. J. Inorg. Chem., 2002, pp. 1718-1728. DOI: 10.1002/1099-0682(200207)2002:7-1718 : :AID-EJIC 1718-3.0.CO;2-S.
  • Bol'shakov O.I., Yushina I.D., Bartashevich E.V., Stash A.I., Aysin R.R., Rakitin O.A. Structure and Properties of 4-Phenyl-5#-1,2,3-Dithiazole-5-Thione Polyiodide with S-I+-S Bridged Complex. Structural chemistry, 2020, DOI: 10.1007/s11224-020-01584-y, in press.
Еще
Статья научная