Искусственный интеллект в онкоурологии обзор литературы

Автор: Рева Сергей Александрович, Шадеркин И.А., Зятчин И.В., Петров С.Б.

Журнал: Экспериментальная и клиническая урология @ecuro

Рубрика: Онкоурология

Статья в выпуске: 2 т.14, 2021 года.

Бесплатный доступ

Введение. Искусственный интеллект (ИИ) относят к вычислительным технологиям, имитирующим интеллектуальные процессы человека. Применение ИИ в ближайшее время будет способствовать широкому внедрению в практику телемедицинских технологий. Материалы и методы. Авторы проанализировали публикации в базе данных PubMed и Электронной научной библиотеке России по ключевым словам «онкология», «урология», «онкоурология», «искусственный интеллект», «oncology», «urology», «cancer urology», «artificial intelligence». В PubMed из 127 статей, отвечающих запросам, было отобрано 32 публикации, в Электронной научной библиотеке было отобрано 3 статьи. Результаты. При раке почки перспективным можно считать КТ-текстурный анализ с методом опорных векторов (SVM), с целью прогнозирования рецидива рака мочевого пузыря применяют алгоритмы машинного обучения (метод опорных векторов) для идентификации рецидива рака мочевого пузыря посредством выявления микро-РНК мочи. С целью снижения количества ненужных биопсий на основе клинических характеристик разработана искусственная нейронная сеть, осуществляющая прогноз наличия рака предстательной железы. Заключение. Методы искусственного интеллекта постоянно развиваются, расширяется спектр их применения в области онкоурологии. В ближайшем будущем не идет речь о замене традиционных методов, но в дополнение к ним искусственный интеллект может давать больше информации о пациенте. Для широкого внедрения данных методов должны быть разработаны механизмы надзора за безопасностью и эффективностью алгоритмов искусственного интеллекта. Нужны дополнительные исследования по клиническому и статистическому сравнению результатов, полученных с помощью ИИ, с результатами, полученными традиционными методами.

Еще

Онкоурология, урология, искусственный интеллект, телемедицина, искусственные нейронные сети, глубокое машинное обучение

Короткий адрес: https://sciup.org/142230133

IDR: 142230133   |   DOI: 10.29188/2222-8543-2021-14-2-46-51

Список литературы Искусственный интеллект в онкоурологии обзор литературы

  • Шадеркин ИА. Роль искусственного интеллекта в телемедицине России. Журнал телемедицины и электронного здравоохранения 2019(5),1:38-40, https://doi.oig/10.29188/2542-2413-2019-5-1-38-40. [Shaderkin I.A. Rol iskusstvennogo intellekta v telemeditsine Rossii. Zhurnal telemeditsinyi i elek-tronnogo zdravoohraneniya = Journal of Telemedicine and E-Health 2019(5)1:38-40, https://doi.org/10.29188/2542-2413-2019-5-1-38-40. (In Russian)].
  • Харитонов С.В., Лямина Н.П., Зайцев В.П., Самсонова Г.О., Голубев М.В. Применение искусственного интеллекта в прогнозировании удовлетворенности больных медицинской помощью в условиях специализированной клиники восстановительного лечения. Журнал телемедицины и электронного здравоохранения 2020(3):15-23. https://doi.org/10.29188/2542-2413-2020-6-3-15-23. [Haritonov S.V., Lyamina N.P., Zaytsev V.P., Samsonova G.O., Golubev M.V. Primenenie iskusstvennogo intellekta v prognozirovanii udovletvoren-nosti bolnyih meditsinskoy pomoschyu v usloviyah spetsializirovannoy kliniki vosstanovitelnogo lecheniya. Zhurnal telemeditsinyi i elektronnogo zdravoohraneniya = Journal of Telemedicine and E-Health 2020(3):15-23. https://doi.org/10.29188/2542-2413-2020-6-3-15-23. (In Russian)].
  • Лебедев Г.С., Маслюков А.П.., Шадеркин И.А., Шадеркина А.И. Глубокое машинное обучение (искусственный интеллект) в ультразвуковой диагностике. Журнал телемедицины и электронного здравоохранения 2020;(2):22-29. [Lebedev G.S., Maslyukov A.P.., Shaderkin I.A., Shaderkina A.I. Glubokoe mashinnoe obuchenie (iskusstvennyiy intellekt) v ultrazvukovoy diag-nostike. Zhurnal telemeditsinyi i elektronnogo zdravoohraneniya = Journal of Telemedicine and E-Health 2020;(2):22-29. (In Russian)].
  • Chen J, Remulla D, Nguyen JH, Aastha D, Liu Y, Dasgupta P, et al. Current status of artificial intelligence applications in urology and their potential to influence clinical practice. BJU International 2019;124(4):567-577. https://doi.org/10.1111/bju.14852.
  • Richard PO, Jewett MAS, Bhatt JR, Kachura JR, Evans AJ, Zlottaet AR, et al. Renal Tumor Biopsy for Small Renal Masses: A Single-center 13-year Experience. Euro Urol 2015;68(6):1007-1013. https://doi.org/10.1016/j.eururo.2015.04.004.
  • Suarez-Ibarrola R, Hem S, Reis G, Gratzke C, Miernik A. Current and future applications of machine and deep learning in urology: a review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer. World J Urol 2020;38(10):2329-2347. https://doi.org/10.1007/s00345-019-03000-5.
  • Bektas CT, Kocak B, Yardimci AH, Turkcanoglu MH, Yucetas U, Koca SB, et al. Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade. Euro Radiol 2019;29(3):1153-1163. https://doi.org/10.1007/s00330-018-5698-2.
  • Schieda N, Lim RS, Krishna S, McInnes MDF, Flood TA, Thornhill RE. Diagnostic accuracy of unenhanced CT analysis to differentiate low-grade from high-grade chromophobe renal cell carcinoma. Amer J Roentgenol 2018;210(5):1079-1087. https://doi.org/10.2214/AJR.17.18874.
  • Kunapuli G, Varghese BA, Ganapathy P, Desai B, Cen S, Aron M, et al. A Decision-Support Tool for Renal Mass Classification. J Digital Imaging 2018;31(6):929-939. https://doi.org/10.1007/s10278-018-0100-0.
  • Yu HS, Scalera J, Khalid M, Touret AS, Bloch N, Li B, et al. Texture analysis as a radiomic marker for differentiating renal tumors. Abdominal Radiology 2017;42(10):2470-2478. https://doi.org/10.1007/ s00261-017-1144-1.
  • Yan L, Liu Z, Wang G, Huang Y, Liu Y, Yu Y, et al. Angiomyolipoma with Minimal Fat: Differentiation From Clear Cell Renal Cell Carcinoma and Papillary Renal Cell Carcinoma by Texture Analysis on CT Images. Academic Radiology 2015;22(9):1115-1121. https://doi.org/10.1016/j.acra.2015.04.004.
  • Feng Z, Rong P, Cao P, Zhou Q, Zhu W, Yan Z, et al. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma. Euro Radiol 2018;28(4):1625-1633. https://doi.org/10.1007/s00330-017-5118-z.
  • Bektas CT, Kocak B, Yardimci AH, Turkcanoglu MH, Yucetas U, Koca SB, et al. Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade. Euro Radiol 2019;29(3):1153-1163. https://doi.org/10.1007/s00330-018-5698-2.
  • Zaridze DG, Mazurenko NN, Bezhanova SD, Maksimovich DM, Shangina OV, Draudin-Krylenko VA, et al. Prognostic role of PBRM1 marker expression in clear-cell renal-cell carcinoma. Onkourologiya 2019;15(1):23-31. https://doi.org/10.17650/1726-9776-2019-15-1-23-31.
  • Kocak B, Durmaz ES, Ates E, Ulusan MB. Radiogenomics in clear cell renal cell carcinoma: Machine learning-based high-dimensional quantitative CT texture analysis in predicting PBRM1 mutation status. Amer J Roentgenol 2019;212(3):W55-W63. https://doi.org/10.2214/AJR.18.20443.
  • Miladi M, Peyromaure M, Zerbib M, Saighi D, Debre B. The Value of a Second Transurethral Resection in Evaluating Patients with Bladder Tumours. Euro Urol 2003;43(3):241-245. https://doi.org/10.1016/S0302-2838(03)00040-X.
  • Xu X, Zhang X, Tian Q, Zhang G, Liu Y, Cui G, et al. Three-dimensional texture features from intensity and high-order derivative maps for the discrimination between bladder tumors and wall tissues via MRI. International Journal of Computer Assisted Radiology and Surgery 2017;12(4):645-656. https://doi.org/10.1007/s11548-017-1522-8.
  • Garapati SS, Hadjiiski L, Cha KH, Chan HP, Caoili EM, Cohan RH, et al. Urinary bladder cancer staging in CT urography using machine learning. Medical Physics 2017;44(11):5814-5823. https://doi.org/10.1002/mp.12510.
  • Shao CH, Chen CL, Lin JY, Chen CJ, Fu SH, Chen YT, et al. Metabolite marker discovery for the detection of bladder cancer by comparative metabolomics. Oncotarget 2017;8(24):38802-38810. https://doi.org/10.18632/oncotarget.16393.
  • Sapre N, Macintyre G, Clarkson M, Naeem H, Cmero M, Kowalczyk A, et al. A urinary mi-croRNA signature can predict the presence of bladder urothelial carcinoma in patients undergoing surveillance. British J Cancer 2016;114(4):454-462. https://doi.org/10.1038/bjc.2015.472.
  • Bartsch G, Mitra AP, Mitra SA, Almal AA, Steven KE, Skinner DG, et al. Use of Artificial Intelligence and Machine Learning Algorithms with Gene Expression Profiling to Predict Recurrent Nonmuscle Invasive Urothelial Carcinoma of the Bladder. J Urol 2016;195(2):493-498. https://doi.org/10.1016/j.juro.2015.09.090.
  • Zhang X, Xu X, Tian Q, Li B, Wu Y, Yan Z, et al. Radiomics assessment of bladder cancer grade using texture features from diffusion-weighted imaging. Journal of Magnetic Resonance Imaging 2017;46(5):1281-1288. https://doi.org/10.1002/jmri.25669.
  • Eminaga O, Eminaga N, Semjonow A, Breil B. Diagnostic Classification of Cystoscopic Images Using Deep Convolutional Neural Networks. JCO Clinical Cancer Informatics 2018;(2):1-8. https://doi.org/10.1200/cci.17.00126.
  • Hasnain Z, Mason J, Gill K, Miranda G, Gill IS, Kuhn P, et al. Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients. Katoh M, ed. PLOS ONE 2019;14(2):e0210976. https://doi.org/10.1371/journal.pone.0210976.
  • Wu E, Hadjiiski LM, Samala RK, Chan HP, Cha KH, Richter C, et al. Deep Learning Approach for Assessment of Bladder Cancer Treatment Response. Tomography (Ann Arbor, Mich) 2019;5(1):201-208. https://doi.org/10.18383/j.tom.2018.00036.
  • Takeuchi T, Hattori-Kato M, Okuno Y, Iwai S, Mikami K. Prediction of prostate cancer by deep learning with multilayer artificial neural network. Canad Urol Association J 2019;13(5):E145-E150. https://doi.org/10.5489/cuaj.5526.
  • Kim J, Yook I, Choi M, Lee J. YP-S in health, 2017 undefined. A Performance Comparison on the Machine Learning Classifiers in Predictive Pathology Staging of Prostate Cancer. europepmc.org. Accessed October 29, 2020. https://sci-hub.do/https://europepmc.org/article/med/29295358.
  • Algohary A, Viswanath S, Shiradkar R, Ghose S, Pahwa S, Moses D, et al. Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: Preliminary findings. Journal of Magnetic Resonance Imaging 2018;48(3):818-828. https://doi.org/10.1002/jmri.25983.
  • Fehr D, Veeraraghavan H, Wibmer A, Gondo T, Matsumoto K, Vargas HA, et al. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America 2015;112(46):E6265-E6273. https://doi.org/10.1073/pnas.1505935112.
  • Kwak JT, Hewitt SM. Multiview boosting digital pathology analysis of prostate cancer. Computer Methods and Programs in Biomedicine 2017(142):91-99. https://doi.org/10.1016/j .cmpb.2017.02.023.
  • Kwak JT, Hewitt SM. Nuclear Architecture Analysis of Prostate Cancer via Convolutional Neural Networks. IEEE Access 2017(142):91-99.. https://doi.org/10.1109/ACCESS.2017.2747838.
  • Nguyen TH, Sridharan S, Macias V, Kajdacsy-Balla A, Melamed J, Do MN, et al. Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning. Journal of Biomedical Optics 2017;22(3):036015. https://doi.org/10.1117/1.jbo.22.3.036015.
  • Arvaniti E, Fricker KS, Moret M, et al. Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Scientific Reports 2018;8(1):12054. https://doi.org/10.1038/s41598-018-30535-1.
  • Donovan MJ, Fernandez G, Scott R, Rupp N, Hermanns T, Fankhauser C, et al. Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithm-based test. Prostate Cancer and Prostatic Diseases 2018;21(4):594-603. https://doi.org/10.1038/s41391-018-0067-4.
  • Wong NC, Lam C, Patterson L, Shayegan B. Use of machine learning to predict early biochemical recurrence after robot-assisted prostatectomy. BJU International 2019;123(1):51. https://doi.org/10.1111/bju.14477.
Еще
Статья обзорная