Isometries of real subspaces of self-adjoint operators in Banach symmetric ideals
Автор: Aminov Behzod R., Chilin Vladimir I.
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 4 т.21, 2019 года.
Бесплатный доступ
Let (CE,∥⋅∥CE) be a Banach symmetric ideal of compact operators, acting in a complex separable infinite-dimensional Hilbert space H. Let ChE={x∈CE:x=x∗} be the real Banach subspace of self-adjoint operators in (CE,∥⋅∥CE). We show that in the case when (CE,∥⋅∥CE) is a separable or perfect Banach symmetric ideal (CE≠C2) any skew-Hermitian operator H:ChE→ChE has the following form H(x)=i(xa-ax) for same a∗=a∈B(H) and for all x∈ChE. Using this description of skew-Hermitian operators, we obtain the following general form of surjective linear isometries V:ChE→ChE. Let (CE,∥⋅∥CE) be a separable or a perfect Banach symmetric ideal with not uniform norm, that is ∥p∥CE>1 for any finite dimensional projection p∈CE with dimp(H)>1, let CE≠C2, and let V:ChE→ChE be a surjective linear isometry. Then there exists unitary or anti-unitary operator u on H such that V(x)=uxu∗ or V(x)=-uxu∗ for all x∈ChE.
Symmetric ideal of compact operators, skew-hermitian operator, isometry
Короткий адрес: https://sciup.org/143168810
IDR: 143168810 | DOI: 10.23671/VNC.2019.21.44607
Список литературы Isometries of real subspaces of self-adjoint operators in Banach symmetric ideals
- Banach, S. Theorie des Operations Lineaires, Warsaw, 1932.
- Lamperti, J. On the Isometries of Some Function Spaces, Pacific Journal of Mathematics, 1958, vol. 8, no. 3, pp. 459-466. DOI: 10.2140/pjm.1958.8.459
- Lumer, G. On the Isometries of Reflexive Orlicz Spaces, Annales de l'Institut Fourier, 1963, vol. 13, no. 1, p. 99-109. DOI: 10.5802/aif.132
- Zaidenberg, M. G. On Isometric Classification of Symmetric Spaces, Doklady Akademii Nauk SSSR, 1977, vol. 234, pp. 283-286 (in Russian).
- Zaidenberg, M. G. A Representation of Isometries of Functional Spaces, Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 1997, vol. 4, no. 3, pp. 339-347.
- Kalton, N. J. and Randrianantoanina, B. Surjective Isometries on Rearrangment Invariant Spaces, The Quarterly Journal of Mathematics, 1994, vol. 45, no. 3, pp. 301-327.
- DOI: 10.1093/qmath/45.3.301
- Braverman, M. Sh. and Semenov, E. M. Isometries on Symmetric Spaces, Doklady Akademii Nauk SSSR, 1974, vol. 217, pp. 257-259 (in Russian).
- Braverman, M. Sh. and Semenov, E. M. Isometries on Symmetric Spaces, Trudy NII Matem. Voronezh. Gos. Univ., 1975, vol. 17, pp. 7-18 (in Russian).
- Arazy, J. Isometries on Complex Symmetric Sequence Spaces, Mathematische Zeitschrift, 1985, vol. 188, no. 3, pp. 427-431.
- DOI: 10.1007/BF01159187
- Aminov, B. R. and Chilin, V. I. Isometries and Hermitian Operators on Complex Symmetric Sequence Spaces, Siberian Advances in Mathematics, 2017, vol. 27, no. 4, pp. 239-252.
- DOI: 10.3103/S1055134417040022
- Arazy, J. The Isometries of Cp, Israel Journal of Mathematics, 1975, vol. 22, no. 3-4, pp. 247-256.
- DOI: 10.1007/BF02761592
- Fleming, R. J. and Jamison, J. E. Isometries on Banach Spaces: Vector-Valued Function Spaces, Chapman-Hall/CRC, 2008.
- Sourour, A. Isometries of Norm Ideals of Compact Operators, Journal of Functional Analysis, 1981, vol. 43, no. 1, pp. 69-77.
- DOI: 10.1016/0022-1236(81)90038-0
- Aminov, B. R. and Chilin, V. I. Isometries of Perfect Norm Ideals of Compact Operators, Studia Math., 2018, vol. 241(1), pp. 87-99.
- DOI: 10.4064/sm170306-19-4
- Garling, D. J. H. On Ideals of Operators in Hilbert Space, Proceedings of the London Mathematical Society, 1967, vol. 17, no. 1, 115-138.
- DOI: 10.1112/plms/s3-17.1.115
- Nagy, G. Isometries of the Spaces of Self-Adjoint Traceless Operators, Linear Algebra and its Applications, 2015, vol. 484, pp. 1-12.
- DOI: 10.1016/j.laa.2015.06.026
- Bennett, C. and Sharpley, R. Interpolation of Operators, Academic Press Inc., 1988.
- Simon, B. Trace Ideals and Their Applications, Mathematical Surveys and Monographs, vol. 120, 2nd edition, Providence, R.I., Amer. Math. Soc., 2005.
- Kalton, N. J. and Sukochev, F. A. {Symmetric Norms and Spaces of Operators, Journal fur die Reine und Angewandte Mathematik, 2008, vol. 621, pp. 81-121.
- DOI: 10.1515/CRELLE.2008.059
- Lord, S., Sukochev, F. and Zanin, D. Singular Traces. Theory and Applications, Berlin/Boston, Walter de Gruyter GmbH, 2013.
- Gohberg, I. C. and Krein, M. G. Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, vol. 18, Providence, R.I., Amer. Math. Soc., 1969.
- Krein, M. G., Petunin, Ju. I. and Semenov, E. M. Interpolation of Linear Operators, Translations of Mathematical Monographs, vol. 54, Providence, R.I., Amer. Math. Soc., 1982.
- Lindenstrauss, J. and Tzafriri, L. Classical Banach Spaces, Berlin and N.Y., Springer-Verlag, 1996.
- Dodds, P. G., Dodds, T. K. and Pagter, B. Noncommutative Kothe Duality, Transactions of the American Mathematical Society, 1993, vol. 339, no. 2, pp. 717-750.
- DOI: 10.2307/2154295
- Dragomir, S. S. Semi-Inner Products and Applications, N.Y., Hauppauge, Nova Science Publishers Inc., 2004.
- Ayupov, Sh. and Kudaybergenov, K. 2-Local Derivations and Automorphisms on B(H), Journal of Mathematical Analysis and Applications, 2012, vol. 395, no. 1, pp. 15-18.
- DOI: 10.1016/j.jmaa.2012.04.064
- Dolinar, G., Guterman, A., Kuzma, B. and Oblak, P. Extremal Matrix Centralizers, Linear Algebra and its Applications, 2013, vol. 438, no. 7, pp. 2904-2910.
- DOI: 10.1016/j.laa.2012.12.010
- Schatten, R. Norm Ideals of Completely Continuous Operators, Berlin and N.Y., Springer-Verlag, 1960.
- Baksalary, J. K. and Baksalary, O. M. Idempotency of Linear Combinations of Two Idempotent Matrices, Linear Algebra and its Applications, 2000, vol. 321, no. 1-3, pp. 3-7.
- DOI: 10.1016/S0024-3795(00)00225-1
- Bratteli, O. and Robinson, D. W. Operator Algebras and Quantum Statistical Mechaniks, N.Y.-Heidelber-Berlin, Springer-Verlag, 1979.