Isomorphisms of noncommutative log-algebras
Автор: Abdullaev Rustambai, Egamov Sevinchbek, Iskandarov Behzad
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Физико-математические науки
Статья в выпуске: 12 т.8, 2022 года.
Бесплатный доступ
The article establishes a necessary and sufficient condition for the isomorphism of log-algebras constructed on different von Neumann algebras by a faithful normal finite trace.
Von neumann algebra, faithful normal finite trace, log-algebra, isomorphisms
Короткий адрес: https://sciup.org/14126032
IDR: 14126032 | DOI: 10.33619/2414-2948/85/05
Текст научной статьи Isomorphisms of noncommutative log-algebras
Бюллетень науки и практики / Bulletin of Science and Practice
UDC 517.98
Let M be the von Neumann algebra, ц the faithful normal finite trace on M, S(M, ц) — *-algebra of measurable operators associated with M.
Consider the set L i og(M, ц)={T eS(M, ц): ц(log(1+|T|))<те} and the function ||T|| i og=
μ(log(1+|T|)) on L log (M, μ). In the work ([1] Lemma 4.1 and 4.3.) the following properties of the function ||'|| iog have been proved.
Lemma 1. Let S, Te S(M, ц). Then
-
a) ||T|| iog >0, provided T/0;
-
b) ||αT|| log ≤||T|| log for all scalars α with |α|≤1;
-
c) If TeLlog(M, ц), then
limHHU = 0 a ^ 0
-
d) ||S+T|| log ≤||S|| log +||T|| log ;
-
e) ||S-T|| log <||S|| log +||T|| log .
It follows from properties a), b), c), d) that the function ||-||log is an F-norm on the space L log (M, μ), and property e) imply that the space L log (M, μ) is a topological algebra with respect to topology generated by the metric p(S,T)=||S-T||log ([1], corollary 4.6). Let's call algebra Llog(M, ц) log - algebra.
In the present paper, we determine the necessary and sufficient condition the isomorphism of the log-algebras constructed by various the faithful normal finite trace on various von Neumann algebras.
Ease of Use
Let M be a von Neumann algebra with faithful normal finite traces ц and v. It follows from 1 D the inequality log|fz)|< -|fz)p that Lp(Q,v)cLlog(Q,v) for pe(0,x). And it follows from the inequalities k1logac< logbc < k2logac that the finiteness of the value ^ log ( 1 + \f(z)\)dv does not depend on the choice of the base of the logarithm. Here k1 is a sufficiently small number and k2 is a sufficiently large number.
Let ц and v be faithful normal finite traces on the von Neumann algebra M, denote by □ = ~ the Radon Nikodim derivative of trace v with respect to ц, such a central positive operator from L1(M,ц) for which the equality v(x )= ц( hx) holds for all x eM [2]. From here we get ц( h )=v(1), i. e. h e L1(M,ц). Moreover, there exists a measurable operator □
1 = — [3]. dM
Prepare Your Paper Before Styling
Proposition 2. Llog(M, ц)с Llog(M,v) if and only if h eM.
Proof. Let heM and feLlog(M, ц), i.e. ^ log( 1 + |f (z)\)d^ < w. Since h is central, the algebra of measurable operators generated by the operators h and f will be commutative. Therefore, in this case S(M, ц) can be identified with the function space on Q. Then
[ log(1 + \f(z)\)dv= f (□ log(1 + \f(z)\))d^< a a
< II □ IIw f log(1 + |f(z)|)dp < w
a
Hence f eL log (M, ц), i.e. L log (M, ц)с L log (M,v).
Conversely, let 0< h eL 1 (M, ц)\M. Then it is possible to construct an infinite sequence of sets
Mn={
z
eQ:
n
<
h
(
z
)<
n
+1}. Now consider the subset of natural numbers N0={neN: ц(M
n
)}. Let us redesignate the elements of the set N
0
as follows N
0
={n
1
,n
2
,…}, n
k
Consider the function
1 g(z} = k^M^)''zQM^ g(z) = o,z E Q\Uk МПк.
Let's put f ( z )= eg -1, then
∞∞ fniog( 1+|f(z)|)dg=fffMMf;)=%f<
However
log(1 + \f(z)\)dg = v(log(1 + \f(z)\')') = X □ (z))log(1+f(z))
a
∞∞∞
^MJ nfc1
^ g ~klk2^(Mnk)° k=1 K k=1k=1
From (1) and (2) it follows that f eLlog(M, ц), and f ?L i og(M, ц), i.e. L i og(M, ц), is not a subset of Llog(M, v), for h eL1(M,ц)\M. So from Llog(M, ц)с Llog(M,v) if and only if, when h eM.
Let h be the Radon-Nikodim derivative of the faithful normal finite trace of v with respect to the faithful normal finite trace of ц The von Neumann algebra M is hence finite. Therefore, by virtue of Theorem 1 [4], h and h -1 are elements of the algebra of measurable elements. Now from the equality v( x )= ц( hx ) we get v( h -1 x )=ц( h -1 hx )=ц(х), i.e. h -1 is the derivative of Radon-Nikodim of trace ц with respect to v. Therefore, from Proposition 2 we obtain.
Corollary 3. Llog(M, ц)=Llog(M, v) if and only if h , h -1eM.
Let M and N be noncommutative von Neumann algebras with faithful normal finite traces μ and v, respectively. Let a:M >N be an isomorphism from M to N. Then the functional ц ° a-1 will be an faithful normal finite trace on N.
Definition 4. Traces ц and v are said to be equivalent if there exists a *-isomorphism a:M>N such that one of the following equivalent conditions is satisfied:
-
( i ) L log (N,v)=L log (N, ц ° a-1);
dv du ° a4
-
- T , e N
-
( ii ) d u ° a d v .
The equivalence of conditions ( i ) and ( ii ) follows from Corollary 3.
Theorem 5. The algebras Llog(M, ц) and Llog(N, v) are *-isomorphic if and only if ц and v are equivalent.
Proof. Let ц and v be equivalent, i. e., there exists a ^isomorphism a: M >N, for which condition (i) is satisfied. The *-isomorphism a: M >N, extends to the *-isomorphism a’ onto the algebra of measurable functions L0(Q). In this case, using the continuity of a' with respect to the topology of convergence in measure, we obtain that a'(Llog(M,ц))=Llog(N,ц°a-1). (3)
By virtue of condition ( i ), we have
L log (N,ц°a-1)=L log (N,v). (4)
From (3) and (4) we obtain that Llog(M, ц) and Llog(N,v) are *-isomorphic.
Conversely, let a' be a *-isomorphism from Llog(M, ц) to Llog(N,v). Then a' translates bounded elements from L log (M, ц) into bounded elements from L log (N,v), i. e. the restriction of a' to M is a *-isomorphism from M to N. Moreover, the *-isomorphism from M to N satisfies the condition that traces ц and v are equivalent.
Список литературы Isomorphisms of noncommutative log-algebras
- Dykema K., Sukochev F., Zanin D. Algebras of log-integrable functions and operators // Complex Analysis and Operator Theory. 2016. V. 10. №8. P. 1775-1787.
- Segal I. E. A non-commutative extension of abstract integration // Annals of mathematics. 1953. P. 401-457.
- Трунов Н. В. К теории нормальных весов на алгебрах Неймана // Известия высших учебных заведений. Математика. 1982. №8. С. 61-70. (in Russian).
- Трунов Н. В. Пространства L_p, ассоциированные с весом на полуконечной алгебре Неймана // Конструктивная теория функций и функциональный анализ. 1981. Т. 3. №0. С. 88-93. (in Russian).