Using homological methods on the base of iterated spectra in functional analysis

Автор: Smirnov Eugeny Ivanovich

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 4 т.14, 2012 года.

Бесплатный доступ

We introduce new concepts of functional analysis: Hausdorff spectrum and Hausdorff limit or $H$-limit of Hausdorff spectrum of locally convex spaces. Particular cases of regular $H$-limit are projective and inductive limits of separated locally convex spaces. The class of $H$-spaces contains Fr\'{e}chet spaces and is stable under forming countable inductive and projective limits, closed subspaces and quotient spaces. Moreover, for $H$-space an unproved variant of the closed graph theorem holds true. Homological methods are used for proving of theorems of vanishing at zero for first derivative of Hausdorff limit functor: $\Haus^{1}(\textbf{\textit{X}})=0.$

Еще

Topology, spectrum, closed graph theorem, differential equation, homological methods, category

Короткий адрес: https://sciup.org/14318403

IDR: 14318403

Статья научная