Использование интеллектуальных технологий для контроля качества творога

Автор: Благовещенская М.М., Давыдова Г.Р., Семина Н.А., Благовещенский И.Г.

Журнал: Вестник Воронежского государственного университета инженерных технологий @vestnik-vsuet

Рубрика: Информационные технологии, моделирование и управление

Статья в выпуске: 2 (60), 2014 года.

Бесплатный доступ

В статье описывается способ контроля качества творога и творожной продукции на основе нейросетевой модели, позволяющей без участия профессиональных дегустаторов максимально объективно оценить вкус готового изделия. Способ заключается в построении нейросетевой модели оценки качества творога по входным и выходным данным. Для решения задачи объективной оценки качества готового продукта предлагается внедрить на производстве программно- аппаратный комплекс определения вкусовых показателей творога и творожной продукции, в основе алгоритма работы которого заложена нейросетевая модель. Функционирование нейросетевой модели базируется на применении аппарата искусственных нейронных сетей, который является одним из направлений развития теории искусственного интеллекта. Модель нейронной сети состоит из нескольких слоев искусственных нейронов, которые имитируют работу своих биологических собратьев (нервных клеток). Функционирование модели искусственного нейрона реализовано по упрощенной аналогии с работой нервной клетки. При решении задачи оценки вкусовых показателей творога и творожной продукции была опробована сеть прямого распространения типа MLP (многослойный персептрон). Особенностью такой сети является то, что входные сигналы передаются от нейронов одного слоя всем нейронам следующего слоя только в направлении от входного слоя к выходному. Для правильной работы искусственной нейронной сети было проведено ее обучение, которое сводилось к подбору оптимальных синаптических весовых коэффициентов. В статье представлена разработанная для этих целей Блок-схема алгоритма обучения. Приведена последовательность основных операций, необходимых для составления нейросетевых моделей и предложены рекомендации для составления программно-аппаратного комплекса. Результаты экспериментов показали, что такой способ оценки показателей вкуса с помощью искусственных нейронных сетей упрощает контроль качества готового продукта, так как позволяет своевременно реагировать на отклонения в процессе производства (исходя из данных, предложенных нейронной сетью).

Еще

Производство творога, нейросетевое моделирование, программно-аппаратный комплекс, контроль качества, органолептические показатели

Короткий адрес: https://sciup.org/14040253

IDR: 14040253

Статья научная