Использование модифицированного "неодимового" полибутадиена в рецептуре обкладки конвейерных лент
Автор: Ярцева Т.А., Карманова О.В., Михалева Н.А., Ткачев А.В.
Журнал: Вестник Воронежского государственного университета инженерных технологий @vestnik-vsuet
Рубрика: Химическая технология
Статья в выпуске: 2 (92), 2022 года.
Бесплатный доступ
В настоящее время в рецептурах конвейерных лент для улучшения прочностных показателей и износостойкости резин используют бутадиеновый каучук в дозировке до 50 масс. ч. Представлены результаты исследования свойств обкладочных резиновых смесей и резин на основе комбинации полиизопрена, бутадиен-стирольного сополимера и полибутадиена, применяемых для изготовления конвейерных лент. Предложено использование в рецептуре обкладки конвейерных лент модифицированного «неодимового» полибутадиена (СКД-НД-M), при получении которого в качестве модификатора использовали полифункциональное гетероциклическое соединение. Образец отличался повышенным содержанием 1,4-цис звеньев, узким ММР и вязкостью по Муни на уровне каучуков, полученных без модификатора. В качестве образцов сравнения использовали серийные марки каучуков, полученных на разных каталитических системах: титановой (СКД) и неодимовой (СКД-НД). Отмечено существенное снижение энегрозатрат при изготовлении резиновых смесей на основе модифицированного каучука по сравнении с резиновой смесью на основе СКД. Установлено, что применение СКД-НД-М вместо СКД позволило достигнуть улучшения технологических свойств резиновых смесей и их вулканизационных характеристик, обеспечить требуемый уровень физико-механических свойств вулканизатов и эксплуатационных показателей обкладочных резин. Отмечено улучшение сопротивления раздиру резин, а также остаточной деформации при сжатии, оцененной при 100°С и 125°С, при использовании в рецептуре обкладочной резины вместо каучука «титанового» каучука, модифицированного «неодимового» полибутадиена. Замена СКД-НД на модифицированный аналог обеспечила снижение показателя истирания обкладки конвейерной ленты, что положительно скажется на увеличении срока службы изделий на его основе.
Бутадиеновый каучук, модифицированный цис -1, 4 полибутадиен, конвейерная лента
Короткий адрес: https://sciup.org/140296185
IDR: 140296185 | DOI: 10.20914/2310-1202-2022-2-276-281
Список литературы Использование модифицированного "неодимового" полибутадиена в рецептуре обкладки конвейерных лент
- Ерофеева Н.В., Чеботова И.Н. Методы повышения долговечности конвейерных лент на горячих грузопотоках // III Международная научно-практическая конференция «Современные тенденции и инновации в науке и производстве». 2014. С. 28-29.
- Голиков Г.Ф. Изучение характера износа обкладок-эффективный путь создания условий для повышения долговечности конвейерных лент // Каучук и резина. 2017. Т. 76. №. 5. С. 298-301.
- Коптев С.С., Коровин В.В. Зарождение производства резиновых технических изделий в Курской области // Известия Юго-Западного государственного университета. 2013. №. 4. С. 210-215.
- Каблов В.Ф., Аксёнов В.И. Современные тенденции применения каучуков и наполнителей в рецептуре резин // Промышленное производство и использование эластомеров. 2018. №. 3. С. 24-34.
- Джабаров Г.В., Лынова А.С., Ярцева Т.А., Туренко С.В. и др. Морозостойкий полибутадиен, полученный на неодимовой каталитической системе // Каучук и резина. 2020. Т. 79. №. 4. С. 180-185.
- Перфельева С.А., Шашок Ж.С., Шкодич В.Ф., Кочнев А.М. Влияние структуры бутадиеновых каучуков на технические свойства шинных резин // Вестник Казанского технологического университета. 2015. Т. 18. №. 2. С. 183-186.
- Pogodaev A.K., Karmanova O.V., Pogodaev A.K., Firsova A.V. et al. Synthesis and properties of functionalized styrene-butadiene rubbers // Journal of Chemical Technology and Metallurgy. 2019. V. 54. № 6. P. 1137-1140.
- Ярцева Т.А., Лагунова С.А., Лынова А.С, Ткачев А.В. Неодимовый полибутадиен, модифицированный тетрахлоридом олова и тетрахлоридом кремния. Свойства каучука и резин на их основе // Промышленное производство и использование эластомеров. 2017. № 3-4. С. 45-49.
- Галимова Е.М., Галимова А.Г. Сахабутдинов А.Г., Коробейникова О.А. Сравнительная оценка характеристик промышленных полибутадиенов, полученных на разных каталитических системах // Каучук и резина. 2018. Т. 77. № 3. С. 142-147.
- Jalal M., Nassir N., Jalal H. Waste tire rubber and pozzolans in concrete: A trade-off between cleaner production and mechanical properties in a greener concrete // Journal of Cleaner production. 2019. V. 238. P. 117882. doi: 10.1016/j.jclepro.2019.117882
- Золотарев В.Л. Левенберг И.П., Ковалева Л.А., Зуев А.А. и др. 1,4-цис-полибутадиен и морозостойкость резин на его основе // Производство и использование эластомеров. 2020. №3-4. С 3-7.
- Wang H., Yang L., Rempel G.L. Homogeneous hydrogenation art of nitrile butadiene rubber: a review // Polymer Reviews. 2013. V. 53. №. 2. P. 192-239. doi: 10.1080/15583724.2013.776586
- Hou G., Tao W., Liu J., Zhang X. et al. Effect of the structural characteristics of solution styrene-butadiene rubber on the properties of rubber composites // Journal of Applied Polymer Science. 2018. V. 135. №. 24. P. 45749. doi: 10.1002/app.45749
- Yang R., Song Y., Zheng Q. Payne effect of silica-filled styrene-butadiene rubber // Polymer. 2017. V. 116. P. 304-313. doi: 10.1016/j.polymer.2017.04.003
- Peterson S.C. Utilization of low-ash biochar to partially replace carbon black in styrene-butadiene rubber composites //Journal of Elastomers & Plastics. 2013. V. 45. №. 5. P. 487-497. doi: 10.1177/0095244312459181
- Qu L., Yu G., Xie X., Wang L. et al. Effect of silane coupling agent on filler and rubber interaction of silica reinforced solution styrene butadiene rubber//Polymer Composites. 2013. V. 34. №. 10. P. 1575-1582. doi: 10.1002/pc.22554
- Lin Y., Liu S., Peng J., Liu L. The filler-rubber interface and reinforcement in styrene butadiene rubber composites with graphene/silica hybrids: A quantitative correlation with the constrained region // Composites Part A: Applied Science and Manufacturing. 2016. V. 86. P. 19-30. doi: 10.1016/j.compositesa.2016.03.029
- Yang Q., Yu S., Zhong H., Liu T. et al. Gas products generation mechanism during co-pyrolysis of styrene-butadiene rubber and natural rubber//Journal of Hazardous Materials. 2021. V. 401. P. 123302. doi: 10.1016/j.jhazmat.2()20.123302
- Choi S.S., Ko E. Novel test method to estimate bound rubber formation of silica-filled solution styrene-butadiene rubber compounds // Polymer testing. 2014. V. 40. P. 170-177. doi: 10.1016/j.polymertesting.2014.09.003
- Shi J., Zou H., Ding L., Li X. et al. Continuous production of liquid reclaimed rubber from ground tire rubber and its application as reactive polymeric plasticizer // Polymer degradation and stability. 2014. V. 99. P. 166-175. doi: 10.1016 /j .polymdegradstab.2013.11.010