Исследование и разработка стратегии маскирования изображений для повышения эффективности масочного автоэнкодера
Автор: Килина М.Л., Буряк Д.Ю.
Журнал: Сетевое научное издание «Системный анализ в науке и образовании» @journal-sanse
Рубрика: Моделирование и анализ данных
Статья в выпуске: 1, 2025 года.
Бесплатный доступ
Работа посвящена проблеме повышения эффективности масочного автоэнкодера за счет разработки стратегии маскирования изображений, которая учитывала бы расположение объектов на изображении и позволяла бы скрыть как можно меньше семантически важной информации. В статье представлен обзор существующих методов маскирования изображений, включая стратегии как с учетом, так и без учета структуры изображения. Предложена стратегия наложения масок на основе алгоритма поиска объектов, анализирующего элементарные характеристики фрагментов изображений. Исследование проводится на примере масочного автоэнкодера с ViT в качестве энкодера. Сравнивается эффективность обучения энкодера с использованием предложенной стратегии и с использованием стратегии случайного маскирования изображений.
Нейронные сети, глубокое обучение, обучение с самоконтролем, моделирование маскированного изображения, модель vit, масочный автоэнкодер
Короткий адрес: https://sciup.org/14133456
IDR: 14133456