Исследование метода Пикара при решении обратной задачи Коши для уравнения теплопроводности
Автор: Аль-махдави Хассан К. ибрахим
Статья в выпуске: 4 т.8, 2019 года.
Бесплатный доступ
В данной работе поставлена и решена обратная задача Коши для уравнения теплопроводности. В этой задаче начальное распределение температуры неизвестно, а вместо него дано распределение температуры в момент времени t=T>0. Среди математических задач выделяется класс задач, решения которых неустойчивы к малым изменениям исходных данных. Они характеризуются тем, что сколь угодно малые изменения исходных данных могут приводить к большим изменениям решений. Хорошо известно, что данная задача некорректно поставлена. Для решения прямой задачи используется метод разделения переменных. Заметим, что метод разделения переменных совершенно неприменим для решения обратной задачи Коши, так как приводит к достаточно большим погрешностям, а также к расходящимся рядам. Иванов В.К. заметил, что если обратную задачу решать методом разделения переменных, а затем полученный ряд заменять частичной суммой ряда, у которой число слагаемых зависит от δ, N=N(δ), то в результате получим устойчивое приближенное решение. Метод Пикара использует регуляризующее семейство операторов {RN}, отображающих пространство L2[0,1] в себя. Приведены результаты вычислительных экспериментов и произведена оценка эффективности данного метода.
Обратная задача теплопроводности, метод пикара, некорректная задача, задача коши
Короткий адрес: https://sciup.org/147233208
IDR: 147233208 | DOI: 10.14529/cmse190401
Список литературы Исследование метода Пикара при решении обратной задачи Коши для уравнения теплопроводности
- Иванов В.К. О применении метода Пикара к решению интегральных уравнений первого рода // Bui. Inst. Politehn. Iasi. 1968. Т. 4, № 34. С. 71-78.
- Иванов В.К., Васин В.В., Танана В.П. Теория линейных некорректных задач и ее приложения. Москва: Наука, 1978. 206 с.
- Kabanikhin S.I. Inverse and Ill-Posed Problems: Theory and Applications. Inverse and Ill Posed Problems, Ser. 55. De Gruyter, 2012. 458 p.
- Tanana V.P., Sidikova A.I. Optimal Methods for Solving Ill-Posed Heat Conduction Problems. Inverse and ill-posed problems, Ser. 62. De Gruyter, 2018. 138 p.
- Тихонов А.Н. О Регуляризации некорректно поставленных задач // Докл. АН СССР, 1963. Т. 153, № 1. С. 49-52.
- Лаврентьев М.М. Некоторых некорректных задачах математической физики. Новосибирск: Изд-во Сиб. отд-ния АН СССР, 1962. 92 c.
- Mu H., Li J., Wang X. Optimization Based Inversion Method for the Inverse Heat Conduction Problems // IOP Conference Series: Earth and Environmental Science. 2017. Vol. 64, no. 1. P. 1-9. DOI: 10.1088/1755-1315/64/1/012094
- Duda P. Solution of Inverse Heat Conduction Problem Using the Tikhonov Regularization Method // Journal of Thermal Science. 2017. Vol. 26, no. 1. P. 60-65. DOI: 10.1007/s11630-017-0910-2
- Frąckowiak A., Botkin N.D., Ciałkowski M. Iterative Algorithm for Solving the Inverse Heat Conduction Problems with the Unknown Source Function // Inverse Problems in Science and Engineering. 2015. Vol. 23, no. 6. P. 1056-1071. DOI: 10.1080/17415977.2014.986723
- Yang S., Xiong X. A. Tikhonov Regularization Method for Solving an Inverse Heat Source Problem // Bull. Malays. Math. Sci. Soc. 2018. Vol. 5, no. 19. P. 1-12. DOI: 10.1007/s40840-018-0693-y