Исследование низкочастотной сдвиговой упругости полиметилсилоксановой жидкости
Автор: Машанов А.Н., Дембелова Т.С.
Журнал: Вестник Бурятского государственного университета. Химия. Физика @vestnik-bsu-chemistry-physics
Статья в выпуске: 2-3, 2022 года.
Бесплатный доступ
По существующим теориям жидкостей сдвиговая упругость должна проявляться при высоких мегагерцовых частотах. В лаборатории была обнаружена низкочастотная упругость. В работе проведено исследование низ- кочастотной сдвиговой упругости полиметилсилоксановой жидкости акустическим резонансным методом с применением пьезокварцевого резонатора. Определены модуль сдвиговой упругости, эффективная вязкость и тангенс угла механических потерь при частоте сдвиговых колебаний 73 кГц.
Резонансный метод, жидкость, вязкоупругие свойства, сдвиговая упругость, релаксация, резонансная частота, затухание
Короткий адрес: https://sciup.org/148328074
IDR: 148328074 | DOI: 10.18101/2306-2363-2022-2-3-37-43
Текст научной статьи Исследование низкочастотной сдвиговой упругости полиметилсилоксановой жидкости
Полисилоксаны имеют широкий диапазон рабочих температур, их применяют как гидравлические и диффузионные жидкости, в качестве теплоносителей и жидких диэлектриков [1]. Они могут применяться в качестве приборных масел, смазок, полирующих средств; добавок к лакам и краскам; а также в качестве базовой жидкости для суспензий [2–6]. Поэтому изучение вязкоупругих свойств таких жидкостей имеет большую актуальность.
В работе проведено экспериментальное определение комплексного модуля сдвига полиметилсилоксановой жидкости акустическим резонансным методом.
Полиметилсилоксаны представляют собой полимер линейной структуры (CH 3 ) 3 Si–O–[Si(CH 3 ) 2 O] n –Si(CH 3 ) 3 , где n = 0 — 2000. Эти полимеры обладают малыми значениями сил межмолекулярного взаимодействия, что проявляются в механических свойствах силоксановых эластомеров и полимерных пленок, особенно в их невысокой прочности на разрыв. Из-за особенностей строения поли-метилсилоксаны имеют отличные низкотемпературные свойства.
Метод
Исследование вязкоупругих свойств полиметилсилоксановой жидкости ПМС-5 проведено акустическим резонансным методом, основанным на изучении влияния сил добавочной связи, осуществляемой прослойкой жидкости, на резонансные характеристики колебательной системы. Жидкость помещается на один конец пьезокварца, совершающего тангенциальные колебания, и накрывается покоящейся твердой накладкой. В теории метода [7-9] показано, что сдвиг резонансной частоты пьезокварца должен быть пропорционален обратной величине толщины прослойки жидкости Н при условии, что Н намного меньше длины сдвиговой волны λ (H<<λ), установившейся в жидкости. Тогда комплексный модуль сдвига будет определяться следующей формулой: (,- 4п2MfoAf*H ,
где G* = G ' + iG '' — комплексный модуль сдвига жидкости, S — площадь основания накладки, H — толщина жидкой прослойки, M — масса пьезокварца, f o — его резонансная частота, A f * = A f ‘ + i A f" — комплексный сдвиг резонансной частоты пьезокварца. Тангенс угла механических потерь выражается так:
tg θ = G ″ /G ′ = Δ f ″ / Δ f ′ . (2)
Таким образом, измерив действительный и мнимый сдвиги резонансной частоты, можно определить вязкоупругие характеристики жидкости. В работе использован пьезокварц Х-18.5° среза с основной резонансной частотой 73,2 кГц, массой 6,82 г; площадь основания накладки 0,2 см2. Для улучшения смачиваемости жидкостью поверхности пьезокварца и накладки подвергались комплексной очистке [8].
Экспериментальные результаты и обсуждение
В работах [9-12] было проведено исследование нелинейных свойств сдвиговой упругости разных жидкостей на основе анализа изменений резонансных кривых колебательной системы пьезокварц — прослойка жидкости — накладка по мере увеличения амплитуды колебания пьезокварца. При увеличении амплитуды колебания пьезокварца резонансные кривые колебательной системы деформируются. Определение амплитуды колебания пьезокварца А проведено методом, основанным на принципе интерферометра Фабри-Перо, где в качестве одного из зеркал используется оптически полированная торцевая сторона пьезокварца [9]. Отношение А / Н может служить мерой угловой деформации.
В данной работе использован этот же метод определения амплитуды колебания пьезокварца. На рис. 1 показаны приведенные резонансные кривые для свободного пьезокварца (кривая 1) и с прослойкой жидкости ПМС-5 толщиной Н = 2,53 мкм (кривая 2) с максимальной амплитудой колебаний 10Å . Из рис. 1 видно, что резонансная частота нагруженного кварца больше, чем свободного, и происходит уширение резонансной кривой. Обе кривые почти симметричны.

Рис. 1. Резонансные кривые свободного (1) пьезокварца и нагруженного (2) жидкостью ПМС-5 ( Н = 2.53 мкм)
С увеличением амплитуды колебания пьезокварца до 85 Å резонансная кривая деформируется и становится асимметричной (рис. 2), что свидетельствует о проявлении нелинейных свойств сдвиговой упругости. Поэтому изменение комплексного модуля сдвига жидкости ПМС-5 в данной работе проводилось при малых амплитудах деформации.

Рис. 2. Резонансные кривые при различных величинах вынуждающей силы с максимальной амплитудой колебания: 1 — 10 Å; 2 — 85 Å
Экспериментальные зависимости сдвигов резонансной частоты от обратной величины толщины прослойки оказались линейными (рис. 3), что подтверждает наличие измеримого модуля сдвига. В Таблице 1 приведены рассчитанные значения модуля сдвига и тангенса угла механических потерь полимерной жидкости ПМС-5 по формулам (1) и (2).

Рис. 3. Экспериментальные зависимости действительного И / 1 (1)
и мнимого И' / 1 (2) сдвига резонансной частоты от обратной величины толщины
прослойки жидкости 1/ Н
Механизм вязкоупругой релаксации в ПМС-5 можно описать реологической моделью Максвелла. Согласно модели эффективная вязкость жидкости определяется следующей формулой:
_ G '(1 + tg2 0 ) 2 п f o tg 9
В таблице приведены значения коэффициента вязкости п полиметилсилоксановой жидкости ПМС-5 и эффективной вязкости η M , проявляющейся при эксперименте, которая рассчитана по модели Максвелла. Как видно из таблицы, она существенно превышает значение известной в литературе табличной вязкости η.
Таблица 1
Экспериментальные результаты исследования вязкоупругих параметров полиметилсилоксановой жидкости
Жидкость |
t, ° C |
G М0-4 , Па |
tg θ |
П , мПа - с |
П м , Па - с |
f рел, кГц |
ПМС-5 |
23 |
1,35 |
0,13 |
4,6 |
0,23 |
9,5 |
Необходимо учитывать, что простая механическая модель Максвелла с одним временем релаксации лишь приближенно описывает вязкоупругое поведение реальных жидкостей. Тем не менее, можно оценить время релаксации, рассматривая ее как величину, обратную частоте релаксации, которой соответствует максимум механических потерь. В рамках модели характерная частота релаксационного процесса определяется по формуле f рел = f о tgθ, и для исследуемой жидкости равна 9,5 кГц. Это означает, что в жидкости ПМС-5 наблюдается низкочастотный вязкоупругий релаксационный процесс с аномально большими значениями периода релаксации и эффективной вязкости.
Таким образом, проведенное исследование подтверждает, что наряду с высокочастотным релаксационным процессом (1010 Гц), которая объясняется характером диффузионной подвижности отдельных частиц в жидкостях, имеет место низкочастотная вязкоупругая релаксация, впервые обнаруженная в работах [13, 14]. В настоящее время развивается кластерная модель жидкости, согласно которой низкочастотная вязкоупругая релаксация жидкостей обусловлена коллективным взаимодействием больших групп молекул [15-17]. Согласно этой модели в жидкостях и аморфных веществах имеются флуктуационные динамические структурные микронеоднородности — кластеры, которые с течением времени образуются и распадаются. Для определения значений основных параметров кластерной модели необходимо исследование низкочастотной сдвиговой упругости жидкостей в широком интервале температур и частот.
Заключение
Проведенное в работе исследование вязкоупругих свойств полиметилсилоксановой жидкости акустическим резонансным методом при малых амплитудах сдвиговых колебаний с частотой 73 кГц показало, что ПМС-5 обладает измеримым модулем сдвига и имеет повышенное значение эффективной вязкости. Время релаксации наблюдаемого вязкоупругого релаксационного процесса намного превышает время оседлой жизни отдельных частиц жидкости.
Полученные экспериментальные данные о вязкоупругих свойствах полиметилсилоксановой жидкости имеют большое практическое значение, обусловленное широким применением полисилоксанов в различных областях современной техники.
Список литературы Исследование низкочастотной сдвиговой упругости полиметилсилоксановой жидкости
- Соболевский М. В., Музовская О. А., Попелева Г. С. Свойства и области применения кремнийорганических продуктов / под общей ред. проф. М. В. Соболевского. Москва: Химия, 1975. 296 с. Текст: непосредственный.
- Zolper T., Li Z., Chen C., Jungk M., Marks T., Chung Y.-W., Wang Q. Lubrication properties of polyalphaolefin and polysiloxane lubricants: Molecular structure-tribology relationships // Tribology Letters. 2012. V. 48. P. 355-365.
- Zhiheng W., Dehua T., Xuejin S., Xiaoyang C. Study on a new type of lubricating oil for miniature bearing operating at ultra-low temperature // China Petroleum Processing and Petrochemical Technology. 2018. V. 20. P. 93-100.
- Niu R., Gong J., Xu D., Tang T., Sun Z.-Y. Rheological properties of ginger-like amorphous carbon filled silicon oil suspensions // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2014. V 444. P. 120-128.
- Дембелова Т. С., Цыренжапова А. Б., Макарова Д. Н., Дамдинов Б. Б., Бадмаев Б. Б. Акустическое исследование сдвиговых вязкоупругих свойств коллоидных суспензий наночастиц // Ученые записки физического факультета Московского университета. 2014. № 5. С. 145301. Текст: непосредственный.
- Damdinov B. B., Dembelova T. S., Badmaev B. B., Tsyrenzhapova A. B., Makarova D.N., Pestryakov A. Study of shear properties of nanoparticle suspensions // Procedia Chemistry. 2014. V. 10. P. 2-6.
- Бадмаев Б. Б., Дембелова Т. С., Дамдинов Б. Б. Вязкоупругие свойства полимерных жидкостей. Улан-Удэ: Изд-во БНЦ СО РАН, 2013. 190 с. Текст: непосредственный.
- Badmaev B., Dembelova T., Damdinov B., Makarova D., Budaev O. Influence of surface wettability on the accuracy of measurement of fluid shear modulus// Colloids and Surfaces A: Physicochem.Eng.Aspects. 2011. V. 383. P. 90-94.
- Базарон У. Б., Дерягин Б. В., Занданова К. Т., Ламажапова Х. Д. Нелинейные свойства сдвиговой упругости жидкостей // Журнал физической химии. 1981. Т. 55, № 11. С. 2812-2816. Текст: непосредственный.
- Бадмаев Б. Б., Дембелова Т. С., Макарова Д. Н., Гулгенов Ч. Ж. Сдвиговая упругость и прочность структуры жидкости на примере диэтиленгликоля // Журнал технической физики. 2017. Т. 87, Вып. 1. С. 18-21. Текст: непосредственный.
- Dembelova T. S., Badmaev B. B., Makarova D. N., Vershinina Ye. D. Nonlinear viscoelastic properties of nanosuspensions // IOP Conf. Series: Materials Science and Engineering. 2019. V. 704. Р. 012005.
- Dembelova T. S., Makarova D. N., Badmaev B. B. Studying the Shear Elasticity Nonlinearity of Nanosuspensions by Acoustic Means // Bulletin of the Russian Academy of Sciences: Physics. 2021. V. 85, № 6. P. 653-657.
- Базарон У. Б., Дерягин Б. В., Булгадаев А. В. О сдвиговой упругости граничных слоев жидкостей // Доклады АН СССР. 1965. Т. 160. № 4. С. 799-803. Текст: непосредственный.
- Базарон У. Б., Дерягин Б. В., Булгадаев А. В. Измерение сдвиговой упругости жидкостей и их граничных слоев резонансным методом // ЖЭТФ. 1966. Т. 51, Вып. 4. С. 969-981. Текст: непосредственный.
- Сандитов Д. С. Дырочно-кластерная модель низкочастотной сдвиговой упругости жидкостей // Доклады СО АН высшей школы. 2001. № 2 (4). С. 38-44. Текст: непосредственный.
- Бадмаев Б. Б., Дамдинов Б., Дембелова Т. С. Вязкоупругая релаксация в жидкостях // Известия РАН. Серия физическая. 2015. Т. 79, № 10. С. 1461-1466. Текст: непосредственный.
- Дембелова Т. С., Сандитов Д. С. Низкочастотная вязкоупругая релаксация в полимерных жидкостях // Вестник Бурятского государственного университета. Химия. Физика. 2022. № 1. С. 24-31. Текст: непосредственный.