Isothermic coordinates on sewing surfaces

Бесплатный доступ

In the paper we investigated the question about existence and uniqueness of isothermic coordinates on sewing surfaces in R𝑚. Such surfaces is special case of irregular surfaces. We obtained the analog of the famous theorem of V.M. Miklukov (2004) for such surfaces. The result of this paper. Theorem 2. Let 𝒳12 be a pasting together of the pair of the surfaces = = (𝐺𝑖, 𝑓𝑖), (𝑖 = 1, 2) and Γ𝑖 = is quasistraight line. Let '12 : Γ1 → Γ2 be a sewing function. Assume that '12 is quasimonotone function and that 𝑃𝑖(𝑥(𝑖)) = 𝐸𝑖(𝑥(𝑖)) + 𝐺𝑖(𝑥(𝑖)) √︀𝐸𝑖(𝑥(𝑖))𝐺𝑖(𝑥(𝑖)) - 𝐹2 (𝑥(𝑖)), = 1, 2, is 𝑊1,2 loc,Γ𝑖-majorized functions in 𝐺𝑖. There exist isothermic coordinates = ( 1, 2) ∈ 𝐵(𝑂,𝑅), > 1 on 𝒳12. These coordinates are determined uniquely by choice of correspondence ←→ 𝑂, ←→ Ξ, where either the 𝑎, ∈ ∪ Γ𝑖(𝑖 = 1, 2) and 𝑎 ̸= 𝑏, or ∈ 𝐺1, ∈ 𝐺2 and 𝑎 ̸= '12(𝑏).

Еще

2 loc γ-мажорируемая функция, isothermic coordinates, sewing surfaces, sewing functions, quasisymmetric function, 2 loc, γ-majorized function, quasistraight line

Короткий адрес: https://sciup.org/14969039

IDR: 14969039   |   DOI: 10.15688/jvolsu1.2016.6.7

Статья научная