Изучение химического состава запаха молочно-растительного экстракта люпина на "пьезоэлектронном носе"

Автор: Шишацкий Ю.И., Кучменко Т.А., Никель С.А., Умарханов Р.У.

Журнал: Вестник Воронежского государственного университета инженерных технологий @vestnik-vsuet

Рубрика: Пищевая биотехнология

Статья в выпуске: 3 (73), 2017 года.

Бесплатный доступ

Большую популярность в пищевой промышленности последних лет получил люпин благодаря уникальному сочетанию технологических и пищевых свойств и доступности. Люпин характеризуется высокой массовой долей белков, в его семенах преобладают легкорастворимые фракции белка: 20,65% альбуминов, 50,5% глобулинов с высоким содержанием незаменимых аминокислот. Обогащение молочно-растительного экстракта нативными компонентами люпина проводится в процессе экстрагирования с интенсификацией его низкочастотными механическими колебаниями. Высокое содержание в люпине белков в процессе обработки приводит к негативному технологическому изменению органолептических свойств изделий - запаха. Измерение состава легколетучей фракции запаха в равновесной газовой фазе над образцами проведено в НИЛ на экспериментальном анализаторе запахов «МАГ 8» с методологией «электронный нос» (производство ООО «Сенсорика - новые технологии», Воронеж). Для установления различий в составе (качественном и количественном) легколетучей фракции запаха проследили изменение общего содержания легколетучих компонентов в равновесной газовой фазе над пробами. По форме фигуры «визуального отпечатка» максимальных откликов всех сенсоров в массиве установлены не значимые различия в химическом составе равновесной газовой фазы над пробами. Нативный запах молочной сыворотки остался без изменений, но стал качественнее мягче при дегустационной оценке вследствие того, что 50% состава легколетучей фракции запаха изменены приемом пастеризации. Выполненное изучение запаха нативного и пастеризованного молочно-растительного экстракта позволяет заключить, что выбранный прием пастеризации можно рекомендовать в технологии продуктов питания с использованием молочно-растительного экстракта, обогащенного белками люпина.

Еще

Анализатор запахов,

Короткий адрес: https://sciup.org/140229888

IDR: 140229888   |   DOI: 10.20914/2310-1202-2017-3-97-103

Текст научной статьи Изучение химического состава запаха молочно-растительного экстракта люпина на "пьезоэлектронном носе"

Актуальной социальной, промышленной задачей в пищевой промышленности является разработка и внедрение качественно новых, безопасных пищевых продуктов, максимального использования биохимических свойств сырья и компонентов, способствующих сохранению и укреплению здоровья нации. Необходима разработка новых научно-практических подходов к максимальному вовлечению молочного белкового-углеводного сырья в производство пищевых продуктов.

Модификация подсырной сыворотки биологически активными веществами, микроэлементами растений направлена на ее изменение при изготовлении продуктов функционального питания.

Тепловая обработка (пастеризация) молочно-растительного экстракта (МРЭ) представляет собой необходимую технологическую операцию, например, в технологии йогуртов, с целью получения безопасных продуктов. В аппаратурно-технологических схемах производства йогуртов [5] после сборника для нативного МРЭ последний пастеризуется в кожухотрубчатом теплообменнике, а затем через холодильник поступает в емкость для заквашивания и сквашивания до образования сгустка. В [5] показана целесообразность выбора рекуперативного теплообменника.

Изучение кинетики, оптимизация и математическое описание процесса экстрагирования из люпина подсырной сывороткой в совокупности с разработкой и успешным внедрением технологии йогуртов и других молокосодержащих продуктов на основе МРЭ на ряде молочных предприятий определяют практическую значимость и широкое применение молочно-растительного экстракта люпина в различных отраслях пищевой промышленности [4].

Ранее обоснованы параметры различных режимов тепловой обработки молока [6], которые применимы и для МРЭ, поскольку он по химическому составу, физико-химическим, органолептическим свойствам, массовой доле сухих веществ, белков, лактозы максимально приближен к цельному молоку.

Для обработки молочно-растительного экстракта выбран режим кратковременной пастеризации продолжительностью 15 с при температуре 72 °C. Условия обеспечивают разрушение почти всех патогенных микроорганизмов, присутствующих в экстракте, при этом вкус и сывороточные белки не изменяются, но происходит активация некоторых ферментов [6].

Большую популярность в пищевой промышленности последних лет получил люпин благодаря уникальному сочетанию технологических и пищевых свойств, доступности; он характеризуется высокой массовой долей белков (более 30% в сухом веществе). В семенах люпина преобладают легкорастворимые фракции белка: 20,65% альбуминов, 50,5% глобулинов с высоким содержанием незаменимых аминокислот. Белок люпина значительно дешевле белков сои и практически равнозначен по питательной ценности.

Обогащение МРЭ нативными компонентами люпина проводится в процессе экстрагирования с интенсификацией его низкочастотными механическими колебаниями.

Высокое содержание в люпине белков в процессе обработки приводит к негативному технологическому изменению органолептических свойств изделий – запаха. Контроль этого параметра, как правило, не проводится инструментальными методами, так как в стандартах прописаны дегустационные испытания. Применение газовой хроматографии, хромато-масс-спектро-метрии также не целесообразно при решении различных внутренних задач производства.

Экспериментальная часть

Измерение состава легколетучей фракции запаха в равновесной газовой фазе (РГФ) над образцами проведено в НИЛ на экспериментальном анализаторе запахов «МАГ-8» с методологией «электронный нос» (производство ООО «Сенсорика – новые технологии», Воронеж). На рис. 4 представлен общий вид рабочего места с анализатором «МАГ-8».

На рисунке 1п редставлен общий вид рабочего места с анализатором «МАГ-8».

Рисунок 1. Общий вид рабочего места с анализатором «Маг-8»

Figure 1. General view of the workplace with the analyzer “Mag 8”

В качестве измерительного массива применены 8 сенсоров на основе пьезокварцевых резонаторов, генерирующих объемные акустические волны с базовой частотой колебаний 10,0 МГц с разнохарактерными пленочными сорбентами на электродах [1–3]. Покрытия выбраны в соответствии с задачей испытаний (возможна эмиссия из проб разных органических соединений):

  •    Сенсор 1Поливинилпирролидон, ПВП.

  •    Сенсор2ПолиэтиленгликольПЭГ-2000.

  •    Сенсор 3 Полиэтиленгликольадипинат, ПЭГА.

  •    Сенсор 4 Твин-40, Tween.

  •    Сенсор5Полиэтиленгликольсукцинат,ПДЭГС.

  •    Сенсор6Дициклогенсан-18-Краун-6,ДЦГ18К6.

  •    Сенсор 7 Пчелиный клей (прополис), ПчК.

  •    Сенсор 8 Бромкрезоловыйзеленый, БКЗ.

Подготовка проб к анализу . Средние пробы объемом 20 см3 помещали в стеклянный пробоотборник, выдерживали при комнатной температуре 20 ± 1 °Cв герметичном сосуде с полимерной мягкой мембраной не менее 20 мин. Отбирали индивидуальным шприцем 3 см3 равновесной газовой фазы (не затрагивая образец!) и вводили в ячейку детектирования. Проба характеризуется высоким содержанием легколетучих веществ в равновесной газовой фазе без нагревания. Температура воздуха в лаборатории 20 ± 1 °C (фон массива сенсоров от 30 до 50 Гц⋅с).

Режим измерения Время измерения 60 с, режим фиксирования откликов сенсоров – равномерный с шагом 1 с, оптимальный алгоритм представления откликов – сенсоров – матрица максимальных откликов отдельных сенсоров. Погрешность измерения – 5%.

Суммарный аналитический сигнал : сформирован с применение интегрального алгоритма обработки сигналов 8-ми сенсоров в виде «визуального отпечатка» (круговая диаграмма). Для установления общего состава запаха проб применяли полные «визуальные отпечатки», максимумов (наибольшие отклики 8-ми сенсоров. В качестве критериев для оценки различия в запахе анализируемых проб выбраны:

Качественные характеристики: форма «визуального отпечатка» с характерными

Таблица 1.

Средние отклики сенсоров ( F i , Гц) и площадь «визуального отпечатка» сигналов сенсоров в РГФ над пробами

Table 1.

The average responses of the sensors ( F i , Hz) and the area of the “visual print” of the sensor signals in the RGF above the samples

№ пробы (Sample)

ПВП

ПЭГ-2000

ПЭГА

Tween

ПДЭГС

ДЦГ18К6

ПчК

БКЗ

SΣ ± 30, Гц⋅с

1

15

22

16

17

23

15

10

7

712

2

15

21

17

15

22

18

9

8

709

Установлено близкое содержание легколетучих органических соединений в равновесной газовой фазе над пробами. Большую интенсивность запаха имеет проба 1 (нативный МРЭ), однако различия между пробами незначимые и не регистрируются органолептически.

Особенность методологии «электронный нос» заключается в отсутствии классической аналитической информации и последовательности получения информации о качественном распределениями по осям откликов, определяется набором соединений в РГФ; параметры эффективной сорбции Аij.

Для распознавания в смеси отдельных классов соединений применены параметры идентификации А ij , рассчитанные по сигналам сенсоров в анализируемых пробах [7].

Количественные характеристики:

  • 1)    S Σ , Гц⋅с . – суммарная площадь полного «визуального отпечатка» – оценивает общую интенсивность запаха, концентрацию легколетучих веществ; 2) максимальные сигналы сенсоров с наиболее активной или специфической пленками сорбентов F i , Гц – для оценки содержания отдельных классов органических соединений в РГФ методом нормировки [2, 3].

«Визуальные отпечатки» максимумов – построены по максимальным откликам сенсоров в РГФ образцов за время измерения (не более 1 мин). Позволяет установить похожесть и различие состава легколетучей фракции запаха над анализируемыми образцами [1].

Отклики сенсоров зафиксированы, статистически обработаны и сопоставлены в программном обеспечении анализатора «MAG Soft», n = 3, р = 0,95.

В качестве проб для проверки правильности измерения, полноты регенерации системы и реакции сенсоров применяли лабораторный воздух после длительной вентиляции.

Результаты и обсуждение

Для установления различий в содержании и природе легколетучих соединений в равновесной газовой фазе под образцами МРЭ, изготовленных по различной рецептуре, сравним величины откликов всех выбранных сенсоров в массиве (таблица 1) .

и количественном составе образцов. Общепринятым является подход кластеризации проб по совокупности всех откликов «Электронного носа» с применением хемометрических методов (метода главных компонент, искусственных нейронных сетей и т. д.).

Предложено применять для полуколиче-ственной относительной характеристики пробы метод нормировки, широко распространенный в хроматографии. При этом отклик каждого сенсора будет интерпретировать как отдельный пик на хроматограмме. Различие заключается в том, что отклик каждого сенсора является суммарным, отражающим эффект из околосенсорного пространства с пленкой сорбента на сенсоре.

Неспецифическая избирательность пленок сорбентов к легколетучим соединениям не позволяет получать однозначную функцию для связи отклика с содержанием отдельных соединений. Однако, так как чувствительность

Относительное содержание компонентов в пробах, ω масс. (± 0,2%)

микровзвешивания сенсоров различается, то совокупность информации всех сенсоров в массиве позволяет сравнить вклад отдельных классов соединений в суммарный сигнал «носа»

и их относительное содержание в различных пробах, анализируемых в одинаковых условиях.

Проследим изменения в количественном составе РГФ над пробой по относительному содержанию основных классов легколетучих соединений (таблица 2) .

Таблица 2.

Table 2.

Relative content of components in samples, ω mass. (± 0.2%)

№ пробы (sample)

ПВП

ПЭГ-2000

ПЭГА

Tween

ДЦГ18К6

ПчК

ПДЭГС

БКЗ

1

12,0

17,6

12,8

13,6

12,0

8,0

18,4

5,6

2

12,0

16,8*

13,6

12,0

14,4

7,2

17,6

6,4

* – выделены отличающиеся от стандарта характеристики

Установлено, что количественный состав равновесной газовой фазы над пробами в представленной выборке различен по содержанию основных классов – соединений. Так, в РГФ над пробой 2 (пастеризованный МРЭ), по сравнению с пробой 1 меньше спиртов, кетонов, ацетатов, короткоцепочечных кислот, алкиламинов.

Технологический процесс пастеризации МРЭ

В стерильный стеклянный сосуд заливали 50 см3 МРЭ с температурой 20 °C помещали в термостат, в котором предварительно устанавливалась температура 72 °C, соответствующая кратковременной пастеризации. Температура

Проба 1

∆Fmax, Гц контролировалась универсальным измерителем ОВЕН ТРМ, термопары которого помещались в экстракт. По истечении 7 с процесс тепловой обработки завершался.

Для установления различий в составе (качественном и количественном) легколетучей фракции запаха проследим изменение общего содержания легколетучих компонентов в РГФ над пробами (рисунок 2) . По форме фигуры «визуального отпечатка» максимальных откликов всех сенсоров в массиве установлены не значимые различия в химическом составе равновесной газовой фазы над пробами (в большей степени по интенсивности аромата).

Проба 2

Проба 1 (синий | blue) и Проба 2 (розовый | pink), общая площадь | area (фиолетовый |purple)

Площадь диаграммы максимумов: базовое измерение 712,41 сравниваемое измерение 709,58 Абсолютная разность площадей: 2,83 Относительная разность площадей: 0,40% Различия не значимые

Area of the diagram of maxima: basic measurement 712.41

Compared measurement 709.58

Absolute difference of areas: 2,83

Relative difference of areas: 0,40% Differences are not significant

Рисунок 2. Визуальные отпечатки максимальных сигналов сенсоров в РГФ над пробами. По осям указаны номера сенсоров в матрице. По вертикали – максимальные отклики сенсоров (Гц)

Figure2. Visual fingerprints of the maximum sensor signals in the RGF over the samples. The axes indicate the number of sensors in the matrix. Vertical–maximumsensorresponses (Hz)

∆F max , Гц

Такие особенности связаны с тем, что «визуальные отпечатки» отражают одновременно и качественный (природа) и количественные (содержание) состав РГФ. И изменения их в совокупности могут не существенно повлиять на геометрические обобщенные характеристики «носа» – S в.о. , при этом отдельные группы соединений могут существенно уменьшаться, а другие увеличиваться по содержанию в результате отдельных технологических циклов и стадий.

Проследим изменения в качественном составе РГФ над пробами и появление/исчезно-вение соединений легколетучей фракции по параметрам А i/j , показывающих постоянство соотношения концентраций отдельных классов легколетучих соединений в РГФ (таблица 3) .

Параметры А i/j для тестируемых проб

Параметры А i/j являются расчетными и сравнивают избирательность двух сенсоров в массиве. Как правило, выбирают для расчета сигналы тех сенсоров, пленки которых характеризуются большей селективностью к отдельным классам соединений и, напротив, более универсальные. Минимальные значения А i/j , полученные для индивидуальных соединений, служат надежным идентификационным параметром их для смесей. В случае малой выборки проб воспользуемся методологией различения отпечатков пальцев. В качестве реперных выберем именно параметры А i/j , так как они максимально отражают постоянство качественного состава запаха проб (таблица 3) .

Таблица 3.

Table 3.

Parameters A i/j for the tested samples

№пробы (sample) Показатель стабильности аромата (Stabilityofaroma) ПДЭГС/ПВП Tween/ПВП ПЭГ-2000/ДЦГ18К6 БКЗ/ПДЭГС ПчК/ПЭГА 1 2 3 4 5 1 4,53 1,13 1,47 0,30 0,62 2 1,47 1,00 1,17 0,36 0,53 Для содержания Forcontent аминов среди всех полярных соединений и воды amines among all polar compounds and water кислот среди всех полярных соединений и воды acids among all polar compounds and water доля спиртов, кетонов среди всех кислородсодержащих соединений fraction of alcohols, ketones among all oxygencontaining compounds циклических аминов среди всех азотсодержащих соединений cyclic amines among all nitrogen-containing compounds кетонов среди спиртов, кислот, кетонов ketones among alcohols, acids, ketones доля ПВП 20

Установлено, что по качественному составу пробы различаются более значимо по группам соединений (таблица 3) . Проба 2 обеднена указанными группами соединений по сравнению с пробой 1.

Для более наглядной демонстрации различий в запахе проб до и после обработки сопоставим пронормированные различающиеся показатели ω и А i/j пробы 2 относительно пробы 1.

Изменение формы нормированного интегрального образа, построенного по относительным количественным и качественным критериям пьезокварцевого микровзвешивания запаха однозначно подтверждает различия в составе равновесных газовых фаз над пробами сыворотки до и после обработки (рисунок 3) .

ПДЭГС

ПчК

ДЦГ-1 К-6

доля ПЭГ-2000

Твин-40

■ Проба 1 ■ проба 2

ПЭГА

Рисунок 3. Интегральный образ нормированных количественных и качественных показателей для проб 1 (стандарт) и 2 (опыт)

Figure 3. The integral image of the standardized quantitative and qualitative indicators for samples 1 (standard) and 2 (experience)

Для оценки эффективности пастеризации с выбранными условиями рассчитаем степень подобия геометрических фигур (ε = 0,165).

Нативный запах молочной сыворотки остался без изменений, но стал качественнее мягче при дегустационной оценке вследствие того, что 50% состава ЛЛФ запаха изменены приемом пастеризации.

Список литературы Изучение химического состава запаха молочно-растительного экстракта люпина на "пьезоэлектронном носе"

  • Шишацкий Ю.И. Обоснование целесообразности применения молочно-растительного экстракта люпина, полученного экстрагированием, в качестве сырья для функциональных продуктов питания//Вопросы современной науки и практики. Университет им. В.И. Вернадского, 2016. № 3(61). С. 203-208.
  • Кучменко Т.А., Шуба А.А., Бельских Н.В. Пример решения идентификационных задач в методе пьезокварцевого микровзвешивания смесей некоторых органических соединений//Аналитика и контроль. 2012. Т. 16. № 2. С. 1-11.
  • Коломникова Я.П., Дерканосова А.А., Мануковская М.В., Литвинова Е.В. Влияние нетрадиционного растительного сырья на биотехнологические свойства и структуру сдобного теста//Вестник Воронежского государственного университета инженерных технологий. 2015. № 3 (65). С. 157-160.
  • Kuznetsova L. et al. On the potential of lupin protein concentrate made by enzymatic hydrolysis of carbohydrates in dairy-like applications//Agronomy Research. 2014. V. 12. №. 3. P. 727-736.
  • Ochoa-Rivas A. et al. Microwave and Ultrasound to Enhance Protein Extraction from Peanut Flour under Alkaline Conditions: Effects in Yield and Functional Properties of Protein Isolates//Food and Bioprocess Technology. 2017. V. 10. №. 3. P. 543-555.
  • Lindner J. D. D. et al. 11 Fermented Foods and Human Health Benefits of Fermente d Functional Foods//Fermentation processes engineering in the food industry. 2013. P. 263.
  • deMoraesFilho A. F., Shirai A. H., Sturm W. Fermentative Processes//Fermentation Processes Engineering in the Food Industry. 2013. P. 237.
  • Мельникова Е.И., Богданова Е.В., Бурцева М.И., Иванов С.С. Молочно-растительный экстракт люпина -сырье для функциональных продуктов питания//Пищевая промышленность. 2014. № 5. С. 70-72.
  • Черников В.В., Лебедева Л.В., Стряпчих Е.С. Повышение конкурентоспособности отраслевых предприятий на основе продуктовых инноваций//Вестник Воронежского государственного университета инженерных технологий. 2012. № 2. С. 191-193.
  • Бойник В.В., Акритиду Х.П. Микроскопическое исследование корней люпина многолистного//Вестник фармации. 2013. № 2 (60). С. 31-34.
Еще
Статья научная