Экспрессия генов, связанных с хозяйственно полезными признаками цыплят-бройлеров (Gallus gallus domesticus), под влиянием различных паратипических факторов (обзор)

Автор: Сизова Е.А., Лутковская Я.В.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 4 т.58, 2023 года.

Бесплатный доступ

Промышленное производство мяса цыплят-бройлеров ( Gallus gallus domesticus ) основывается на использовании скороспелых высокопродуктивных кроссов, создание которых стало возможным благодаря работе генетиков и селекционеров. Исходные линии современных цыплят-бройлеров были получены в результате искусственного отбора, прежде всего по эффективности кормления, конверсии корма и скорости роста (W. Fu, с соавт., 2016). Прогрессивные генетические исследования, селекционные технологии и кормление в сочетании с эффективным ветеринарным контролем дают возможность производить мясо птицы высокого качества (A.A. Grozina, 2014). С 1957 по 2001 год время достижения цыплятами-бройлерами рыночной массы снизилось в 3 раза, при этом сократилось потребление кормов (M. Georges, с соавт., 2019). Определение экспрессии мРНК генов, участвующих в росте и развитии бройлеров, усвоении питательных веществ и устойчивости к возбудителям заболеваний, необходимо для успешного отбора птицы с желательными качествами (K. Lassiter с соавт., 2019). Целью представленного обзора стал анализ многообразия генов и их активности при формировании хозяйственно полезных признаков у цыплят-бройлеров и факторов, влияющих на экспрессию этих генов. В статье представлены гены, продукты которых принимают участие в росте и развитии ( GH , IGF-1 , GHR , MYOD1 , MYOG , MSTN ), усвоении нутриентов ( SLC2A1 , SLC2A2 , SLC2A3 , SLC2A8 , SLC2A9 , SLC2A12 , SLC6A19 , SLC7A1 , SLC7A2 , SLC7A5-7 , SLC15A1 , SLC38A2 ), иммунном ответе ( IL1B , IL6 , IL8L2 , IL16 , IL17A , IL18 , TNF- a, AvBD1-AvBD14 ). Одним из путей регуляции скорости роста скелета и размеров тела служит соматотропная ось гормон роста (growth hormone, GH)-инсулиноподобный фактор роста 1 (insulin like growth factor 1, IGF-1)-рецептор гормона роста (growth hormone receptor, GHR) (L.E. Ellestad с соавт., 2019). Анализ экспрессии генов GH , GHR и IGF-1 и отбор по признаку высокой скорости роста у цыплят-бройлеров может повысить активность связывания гормона роста, синтез IGF-1 в печени и, следовательно, массу тела (S. Pech-Pool с соавт., 2020). Миогенез опосредован действием различных факторов и генов, в их числе миогенный регуляторный фактор ( myogenic regulatory factors, MRF ), фактор миогенной дифференцировки 1 ( myogenic differentiation 1, MYOD1 ), миогенин ( myogenin, MYOG ), экспрессия которых может меняться в зависимости от ингредиентного состава рациона и специфических добавок. Значительно увеличить экспрессию генов MYOD1 и MYOG в грудных мышцах и GH и IGF-1 в печени одновременно с улучшением показателей роста можно при добавлении в рацион протеазы (Y. Xiao с соавт., 2020). Гены, ассоциированные с усвоением питательных веществ и их экспрессия влияют на транспортные белки, приводя к ускоренному поступлению нутриентов в эпителий кишечника, систему кровообращения, а затем ко всем органам и тканям. В свою очередь, их экспрессия может быть зависима от кормовых добавок различного функционала. В транспорте аминокислот задействованы носители растворенных веществ (solute carrier family, SLC): SLC6A19 (B0AT1) и SLC38A2 (SNAT2) - натрий-зависимые переносчики нейтральных аминокислот; SLC7A1 и SLC7A2 - переносчики катионных аминокислот (cationic amino acid transporter, CAT: CAT1, CAT2); SLC7A5-7 - переносчики L-аминокислот (L-type amino acid transporter, LAT: LAT1, gLAT2) (J.A. Payne с соавт., 2019; C.N. Khwatenge с соавт., 2020; N.S. Fagundes с соавт., 2020). На экспрессию генов иммунитета ( IL1B , IL6 , IL8L2, IL16, IL17A, IL18 , TNF- a, AvBD1-AvBD14 ) цыплят-бройлеров, инициирующих синтез факторов иммунного ответа, оказывает влияние инфицирование микроорганизмами Escherichia coli , Salmonella spp., Pseudomonas aeruginosa , Clostridium perfringens , Listeria monocytogenes , Eimeria spp. и др. (G.Y. Laptev с соавт., 2019; T. Nii с соавт., 2019). Также выявлено модулирующее влияние температуры на экспрессию генов. Повышенная температура выращивания птицы (39 °С) ведет к значительному увеличению экспрессии мРНК генов IL6 , IL1b , TNF- a, TLR2 , TLR4 , NFkB50 , NFkB65 , Hsp70 и HSF3 в тканях селезенки и печени (M.B. Al-Zghoul с соавт., 2019). В настоящее время идет поиск кормовых добавок (пребиотиков, пробиотиков, синбиотиков, фитобиотиков и аминокислот), которые поддерживают физиологическое состояние птицы, предотвращают развитие заболеваний, способствуют ускорению роста без ущерба для здоровья и улучшают продуктивность посредством воздействия на экспрессию генов.

Еще

Цыплята-бройлеры, продуктивность, экспрессия генов, рост, иммунитет, кормовые добавки

Короткий адрес: https://sciup.org/142239839

IDR: 142239839   |   DOI: 10.15389/agrobiology.2023.4.581rus

Список литературы Экспрессия генов, связанных с хозяйственно полезными признаками цыплят-бройлеров (Gallus gallus domesticus), под влиянием различных паратипических факторов (обзор)

  • Georges M., Charlier C., Hayes B. Harnessing genomic information for livestock improvement. Nature Reviews Genetics, 2019, 20: 135-156 (doi: 10.1038/s41576-018-0082-2).
  • Rubin C.-J., Zody M.C., Eriksson J., Meadows J.R., Sherwood E., Webster M.T., Jiang L., Ingman M., Sharpe T., Ka S., Hallböök F., Besnier F., Carlborg O., Bed'hom B., Tixier-Boich-ard M., Jensen P., Siegel P., Lindblad-Toh K., Andersson L. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature, 2010, 464(7288): 587-591 (doi: 10.1038/nature08832).
  • Fu W., Lee W.R., Abasht B. Detection of genomic signatures of recent selection in commercial broiler chickens. BMC Genetics, 2016, 17: 122 (doi: 10.1186/s12863-016-0430-1).
  • Grozina A.A. Gut microbiota of broiler chickens influenced by probiotics and antibiotics as re-vealed by T-RFLP and RT-PCR. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology]. 2014, 6: 46-58 (doi: 10.15389/agrobiology.2014.6.46eng).
  • Lassiter K., Kong B.C., Piekarski-Welsher A., Dridi S., Bottje W.G. Gene expression essential for myostatin signaling and skeletal muscle development is associated with divergent feed effi-ciency in pedigree male broilers. Frontiers in Physiology, 2019, 10: 126 (doi: 10.3389/fphys.2019.00126).
  • Jia J., Ahmed I., Liu L., Liu Y., Xu Z., Duan X., Li Q., Dou T., Gu D., Rong H., Wang K., Li Z., Talpur M.Z., Huang Y., Wang S., Yan S., Tong H., Zhao S., Zhao G., te Pas M.F.W., Su Z., Ge C. Selection for growth rate and body size have altered the expression profiles of somatotropic axis genes in chickens. PLoS ONE, 2018, 13(4): e0195378 (doi: 10.1371/jour-nal.pone.0195378).
  • Ellestad L.E., Cogburn L.A., Simon J., Le Bihan-Duval E., Aggrey S.E., Byerly M.S., Du-clos M.J., Porter T.E. Transcriptional profiling and pathway analysis reveal differences in pituitary gland function, morphology, and vascularization in chickens genetically selected for high or low body weight. BMC Genomics, 2019, 20(1): 1-21 (doi: 10.1186/s12864-019-5670-9).
  • Pech-Pool S., Berumen L.C., Martínez-Moreno C.G., García-Alcocer G., Carranza M., Luna M., Arámburo C. Thyrotropin-releasing hormone (TRH) and somatostatin (SST), but not growth hormone-releasing hormone (GHRH) nor ghrelin (GHRL), regulate expression and re-lease of immune growth hormone (GH) from chicken bursal B-lymphocyte cultures. International Journal of Molecular Sciences, 2020, 21(4): 1436 (doi: 10.3390/ijms21041436).
  • Hosnedlova B., Vernerova K., Kizek R., Bozzi R., Kadlec J., Curn V., Kouba F., Fernandez K., Machander V., Horna H. Associations between IGF1, IGFBP2 and TGF3 genes polymorphisms and growth performance of broiler chicken lines. Animals, 2020, 10(5): 800 (doi: 10.3390/ani10050800).
  • Huang H.Y., Zhao Z.H., Li S.F., Liang Z., Li C.M., Wang Q.B. Pattern of GHR mRNA ex-pression and body growth in the S2 line of sex-linked dwarf chickens. Genetics and Molecular Research, 2016, 15(4): 1-7 (doi: 10.4238/gmr15047416).
  • Park J.H., Lee S.I., Kim I.H. The effect of protease on growth performance, nutrient digestibility, and expression of growth-related genes and amino acid transporters in broilers. Journal of Animal Science and Technology, 2020, 62(5): 614-627 (doi: 10.5187/jast.2020.62.5.614).
  • Xiao Y., Wu C., Li K., Gui G., Zhang G., Yang H. Association of growth rate with hormone levels and myogenic gene expression profile in broilers. Journal of Animal Science and Biotechnol-ogy, 2017, 8(1): 43 (doi: 10.1186/s40104-017-0170-8).
  • Al-Zghoul M.B., El-Bahr S.M. Thermal manipulation of the broilers embryos: expression of muscle markers genes and weights of body and internal organs during embryonic and post-hatch days. BMC Veterinary Research, 2019, 15: 166 (doi: 10.1186/s12917-019-1917-6).
  • Chen J., Wang M., Kong Y., Ma H., Zou S. Comparison of the novel compounds creatine and pyruvateon lipid and protein metabolism in broiler chickens. Animal, 2011, 5(7): 1082-1089 (doi: 10.1017/S1751731111000085).
  • Bhattacharya T.K., Shukla R., Chatterjee R.N., Bhanja S.K. Comparative analysis of silencing expression of myostatin (MSTN) and its two receptors (ACVR2A and ACVR2B) genes affecting growth traits in knock down chicken. Scientific Reports, 2019, 9: 7789 (doi: 10.1038/s41598-019-44217-z).
  • Grobet L., Martin L.J., Poncelet D., Pirottin D., Brouwers B., Riquet J., Schoeberlein A., Dun-ner S., Ménissier F., Massabanda J., Fries R., Hanset R., Georges M. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet., 1997, 17(1): 71-74 (doi: 10.1038/ng0997-71).
  • Payne J.A., Proszkowiec-Weglarz M., Ellestad L.E. Delayed access to feed alters expression of genes associated with carbohydrate and amino acid utilization in newly hatched broiler chicks. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2019, 317(6): R864-R878 (doi: 10.1152/ajpregu.00117.2019).
  • Ibitoye E.B., Lokman I.H., Hezmee M.N.M., Goh Y.M., Zuki A.B.Z., Jimoh A.A., Danmaigoro A., Pilau N.N. Gut health and serum growth hormone levels of broiler chickens fed dietary chitin and chitosan from cricket and shrimp. Poultry Science, 2019, 98(2): 745-752 (doi: 10.3382/ps/pey419).
  • Kheravii S.K., Swick R.A., Choct M., Wu S.B. Upregulation of genes encoding digestive enzymes and nutrient transporters in the digestive system of broiler chickens by dietary supplementation of fiber and inclusion of coarse particle size corn. BMC Genomics, 2018, 19: 208 (doi: 10.1186/s12864-018-4592-2).
  • Al-Khalaifah H.S., Shahin S.E., Omar A.E., Mohammed H.A., Mahmoud H.I., Ibrahim D. Effects of graded levels of microbial fermented or enzymatically treated dried brewer’s grains on growth, digestive and nutrient transporter genes expression and cost effectiveness in broiler chick-ens. BMC Veterinary Research, 2020, 16: 424 (doi: 10.1186/s12917-020-02603-0).
  • Khwatenge C.N., Kimathi B.M., Nahashon S.N. Transcriptome analysis and expression of se-lected cationic amino acid transporters in the liver of broiler chicken fed diets with varying con-centrations of lysine. International Journal of Molecular Sciences, 2020, 21(16): 5594 (doi: 10.3390/ijms21165594).
  • Fagundes N.S., Milfort M.C., Williams S.M., Da Costa M.J., Fuller A.L., Menten J.F., Rekaya R., Aggrey S.E. Dietary methionine level alters growth, digestibility, and gene expression of amino acid transporters in meat-type chickens. Poultry Science, 2020, 99(1): 67-75 (doi: 10.3382/ps/pez588).
  • Byers M.S., Howard C., Wang X. Avian and mammalian facilitative glucose transporters. Micro-arrays, 2017, 6(2): 7 (doi: 10.3390/microarrays6020007).
  • Shimamoto S., Nakashima K., Kamimura R., Kohrogi R., Inoue H., Nishikoba N., Ohtsuka A., Ijiri D. Insulin acutely increases glucose transporter 1 on plasma membranes and glucose uptake in an AKT-dependent manner in chicken adipocytes. General and Comparative Endocrinology, 2019, 283: 113232 (doi: 10.1016/j.ygcen.2019.113232).
  • Zhang W., Sumners L.H., Siegel P.B., Cline M.A., Gilbert E.R. Quantity of glucose transporter and appetite-associated factor mRNA in various tissues after insulin injection in chickens selected for low or high body weight. Physiological Genomics, 2013, 45(22): 1084-1094 (doi: 10.1152/phys-iolgenomics.00102.2013).
  • Ji J., Tao Y., Zhang X., Pan J., Zhu X., Wang H., Du P., Zhu Y., Huang Y., Chen W. Dynamic changes of blood glucose, serum biochemical parameters and gene expression in response to ex-ogenous insulin in Arbor Acres broilers and Silky fowls. Scientific Reports, 2020, 10: 6697 (doi: 10.1038/s41598-020-63549-9).
  • Coudert E., Pascal G., Dupont J., Simon J., Cailleau-Audouin E., Crochet S., Duclos M.J., Tesseraud S., Métayer-Coustard S. Phylogenesis and biological characterization of a new glucose transporter in the chicken (Gallus gallus), GLUT12. PLoS ONE, 2015, 10(10): e0139517 (doi: 10.1371/journal.pone.0139517).
  • Coudert E., Praud C., Dupont J., Crochet S., Cailleau-Audouin E., Bordeau T., Godet E., Col-lin A., Berri C., Tesseraud S., Métayer-Coustard S. Expression of glucose transporters SLC2A1, SLC2A8, and SLC2A12 in different chicken muscles during ontogenesis. Journal of Animal Sci-ence, 2018, 96(2): 498-509 (doi: 10.1093/jas/skx084).
  • Laptev G.Y., Filippova V.A., Kochish I.I., Yildirim E.A., Ilina L.A., Dubrovin A.V., Bra-zhnik E.A., Novikova N.I., Novikova O.B., Dmitrieva M.E., Smolensky V.I., Surai P.F., Grif-fin D.K., Romanov M.N. Examination of the expression of immunity genes and bacterial profiles in the caecum of growing chickens infected with Salmonella enteritidis and fed a phytobiotic. Animals (Basel), 2019, 9(9): 615 (doi: 10.3390/ani9090615).
  • Nii T., Jirapat J., Isobe N., Yoshimura Y. Effects of oral administration of Lactobacillus reuteri on mucosal barrier function in the digestive tract of broiler chicks. The Journal of Poultry Science, 2019, 57(1): 67-76 (doi: 10.2141/jpsa.0190035).
  • Das Q., Islam M.R., Lepp D., Tang J., Yin X., Mats L., Liu H., Ross K., Kennes Y.M., Yac-ini H., Warriner K., Marcone M.F., Diarra M.S. Gut microbiota, blood metabolites, and spleen immunity in broiler chickens fed berry pomaces and phenolic-enriched extractives. Front. Vet. Sci., 2020, 7: 150 (doi: 10.3389/fvets.2020.00150).
  • Saleh K.M., Al-Zghoul M.B. Thermal manipulation during broiler chicken embryogenesis mod-ulates the splenic cytokines’ mRNA expression. Jordan Journal of Biological Sciences, 2019, 12(5): 595-601.
  • Connerton P.L., Richards P.J., Lafontaine G.M., O’Kane P.M., Ghaffar N., Cummings N.J., Smith D.L., Fish N.M., Connerton I.F. The effect of the timing of exposure to Campylobacter jejuni on the gut microbiome and inflammatory responses of broiler chickens. Microbiome, 2018, 6: 88 (doi: 10.1186/s40168-018-0477-5).
  • Miao J., Bao Y., Ye J., Shao H., Qian K., Qin A. Transcriptional profiling of host gene expression in chicken embryo fibroblasts infected with reticuloendotheliosis virus strain HA1101. PLoS ONE, 2015, 10(5): e0126992 (doi: 10.1371/journal.pone.0126992).
  • Yu H., Zou W., Wang X., Dai G., Zhang T., Zhang G., Xie K., Wang J., Shi H. Research Note: Correlation analysis of interleukin-6, interleukin-8, and CC motif chemokine ligand 2 gene ex-pression in chicken spleen and cecal tissues after Eimeria tenella infection in vivo. Poultry Science, 2020, 99(3): 1326-1331 (doi: 10.1016/j.psj.2019.10.071).
  • Gupta A., Bansal M., Wagle B., Sun X., Rath N., Donoghue A., Upadhyay A. Sodium butyrate reduces salmonella enteritidis infection of chicken enterocytes and expression of inflammatory host genes in vitro. Frontiers in Microbiology, 2020, 11: 2309 (doi: 10.3389/fmicb.2020.553670).
  • Lucke A., Böhm J., Zebeli Q., Metzler-Zebeli B.U. Dietary deoxynivalenol and oral lipopolysac-charide challenge differently affect intestinal innate immune response and barrier function in broiler chickens. Journal of Animal Science, 2018, 96(12): 5134-5143 (doi: 10.1093/jas/sky379).
  • Al-Zghoul M.B., Saleh K.M., Ababneh M.M.K. Effects of pre-hatch thermal manipulation and post-hatch acute heat stress on the mRNA expression of interleukin-6 and genes involved in its induction pathways in 2 broiler chicken breeds. Poultry Science, 2019, 98(4): 1805-1819 (doi: 10.3382/ps/pey499).
  • Xue G., Yin J., Zhao N., Liu Y., Fu Y., Zhang R., Bao J., Li J. Intermittent mild cold stimulation improves the immunity and cold resistance of spleens in broilers. Poultry Science, 2021, 100(12): 101492 (doi: 10.1016/j.psj.2021.101492).
  • Mowbray C.A., Niranji S S., Cadwell K., Bailey R., Watson K. A., Hall J. Gene expression of AvBD6-10 in broiler chickens is independent of AvBD6, 9, and 10 peptide potency. Veterinary Immunology and Immunopathology, 2018, 202: 31-40 (doi: 10.1016/j.vetimm.2018.06.007).
  • Yoshimura Y. Avian β-defensins expression for the innate immune system in hen reproductive organs. Poultry Science, 2015, 94(4): 804-809 (doi: 10.3382/ps/peu021).
  • Niu S., Jahejo A.R., Jia F.J., Li X., Ning G.B., Zhang D., Ma H.L., Hao W.F., Gao W.W., Zhao Y.J., Gao S.M., Li G.L., Li J.H., Yan F., Gao R.K., Bi Y.H., Han L.X., Gao G.F., Tian W.X. Transcripts of antibacterial peptides in chicken erythrocytes infected with Marek's disease virus. BMC Vet. Res., 2018, 14: 363 (doi: 10.1186/s12917-018-1678-7).
  • Alagawany M., Elnesr S.S., Farag M.R., Tiwari R., Yatoo M.I., Karthik K., Michalak I., Dhama K. Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health — a comprehensive review. Veterinary Quarterly, 2021, 41(1): 1-29 (doi: 10.1080/01652176.2020.1857887).
  • Berrocoso J.D., Kida R., Singh A.K., Kim Y.S., Jha R. Effect of in ovo injection of raffinose on growth performance and gut health parameters of broiler chicken. Poultry Science, 2017, 96(6): 1573-1580 (doi: 10.3382/ps/pew430).
  • Dunislawska A., Slawinska A., Stadnicka K., Bednarczyk M., Gulewicz P., Jozefiak D., Siwek M. Synbiotics for broiler chickens — in vitro design and evaluation of the influence on host and selected microbiota populations following in ovo delivery. PloS ONE, 2017, 12(1): e0168587 (doi: 10.1371/journal.pone.0168587).
  • Cheled-Shoval S.L., Amit-Romach E., Barbakov M., Uni Z. The effect of in ovo administration of mannan oligosaccharide on small intestine development during the pre-and posthatch periods in chickens. Poultry Science, 2011, 90(10): 2301-2310 (doi: 10.3382/ps.2011-01488).
  • Motlagh A.M., Babapour V., Pirsaraei Z.A., Sheikhi N. Effect of thyme (Zataria Multiflora) extract and probiotic (broilact) feeding on blood thyroid hormones concentration and growth hormone gene expression of liver in broiler chickens. Indian Journal of Fundamental and Applied Life Sciences, 2015, 5(S1): 1979-1985.
  • Cox C.M., Sumners L.H., Kim S., McElroy A.P., Bedford M.R., Dalloul R.A. Immune responses to dietary -glucan in broiler chicks during an Eimeria challenge. Poultry Science, 2010, 89(12): 2597-2607 (doi: 10.3382/ps.2010-00987).
  • Teng P.-Y., Kim W.K. Roles of prebiotics in intestinal ecosystem of broilers. Frontiers in Veteri-nary Science, 2018, 5: 245 (doi: 10.3389/fvets.2018.00245).
  • Shao Y., Wang Z., Tian X., Guo Y., Zhang H. Yeast -D-glucans induced antimicrobial peptide expressions against Salmonella infection in broiler chickens. International Journal of Biological Macromolecules, 2016, 85: 573-584 (doi: 10.1016/j.ijbiomac.2016.01.031).
  • Flaujac Lafontaine G.M., Richards P.J., Connerton P.L., O’Kane P.M., Ghaffar N.M., Cum-mings N.J., Fish N.M., Connerton I.F. Prebiotic driven increases in IL-17A do not prevent Campylobacter jejuni colonization of chickens. Frontiers in Microbiology, 2020, 10: 3030 (doi: 10.3389/fmicb.2019.03030).
  • Richards P.J., Flaujac Lafontaine G.M., Connerton P.L., Liang L., Asiani K., Fish N.M., Con-nerton I.F. Galacto-oligosaccharides modulate the juvenile gut microbiome and innate immunity to improve broiler chicken performance. Msystems, 2020, 5(1): e00827-19 (doi: 10.1128/mSys-tems.00827-19).
  • Slawinska A., Dunislawska A., Plowiec A., Radomska M., Lachmanska J., Siwek M., Ta-vaniello S., Maiorano G. Modulation of microbial communities and mucosal gene expression in chicken intestines after galactooligosaccharides delivery in ovo. PLoS ONE, 2019, 14(2): e0212318 (doi: 10.1371/journal.pone.0212318).
  • Kareem K.Y., Loh T.C., Foo H.L., Akit H., Samsudin A.A. Effects of dietary postbiotic and inulin on growth performance, IGF1 and GHR mRNA expression, faecal microbiota and volatile fatty acids in broilers. BMC Veterinary Research, 2016, 12: 163 (doi: 10.1186/s12917-016-0790-9).
  • Płowiec A., Sławińska A., Siwek M.Z., Bednarczyk M.F. Effect of in ovo administration of inulin and Lactococcus lactis on immune-related gene expression in broiler chickens. American Journal of Veterinary Research, 2015, 76(11): 975-982 (doi: 10.2460/ajvr.76.11.975).
  • Chen C.-Y., Tsen H.-Y., Lin C.-L., Yu B., Chen C.-S. Oral administration of a combination of select lactic acid bacteria strains to reduce the Salmonella invasion and inflammation of broiler chicks. Poultry Science, 2012, 91(9): 2139-2147 (doi: 10.3382/ps.2012-02237).
  • Brisbin J.T., Zhou H., Gong J., Sabour P., Akbari M.R., Haghighi H.R., Yu H., Clarke A., Sarson A.J., Sharif S. Gene expression profiling of chicken lymphoid cells after treatment with Lactobacillus acidophilus cellular components. Developmental & Comparative Immunology, 2008, 32(5): 563-574 (doi: 10.1016/j.dci.2007.09.003).
  • Calik A., Omara I.I., White M.B., Li W., Dalloul R.A. Effects of dietary direct fed microbial supplementation on performance, intestinal morphology and immune response of broiler chickens challenged with coccidiosis. Frontiers in Veterinary Science, 2019, 6: 463 (doi: 10.3389/fvets.2019.00463).
  • Shanmugasundaram R., Markazi A., Mortada M., Ng T.T., Applegate T.J., Bielke L.R., Syed B., Pender C.M., Curry S., Murugesan G.R., Selvaraj R.K. Research note: effect of synbiotic sup-plementation on caecal Clostridium perfringens load in broiler chickens with different necrotic enteritis challenge models. Poultry Science, 2020, 99(5): 2452-2458 (doi: 10.1016/j.psj.2019.10.081).
  • Shanmugasundaram R., Mortada M., Cosby D.E., Singh M., Applegate T.J., Syed B., Pender C.M., Curry S., Murugesan G.R., Selvaraj R.K. Synbiotic supplementation to decrease Salmonella colonization in the intestine and carcass contamination in broiler birds. PLoS ONE, 2019, 14(10): e0223577 (doi: 10.1371/journal.pone.0223577).
  • Ibrahim D., Abdelfattah-Hassan A., Badawi M., Ismail T.A., Bendary M.M., Abdelaziz A.M., Mosbah R.A., Mohamed D.I., Arisha A.H., Abd El-Hamid M.I. Thymol nanoemulsion promoted broiler chicken’s growth, gastrointestinal barrier and bacterial community and conferred protec-tion against Salmonella Typhimurium. Scientific Reports, 2021, 11: 7742 (doi: 10.1038/s41598-021-86990-w).
  • Lee A., Dal Pont G.C., Farnell M.B., Jarvis S., Battaglia M., Arsenault R.J., Kogut M.H. Sup-plementing chestnut tannins in the broiler diet mediates a metabolic phenotype of the ceca. Poul-try Science, 2021, 100(1): 47-54 (doi: 10.1016/j.psj.2020.09.085).
  • Ibrahim D., Sewid A.H., Arisha A.H., abd El-Fattah A.H., Abdelaziz A.M., Al-Jabr O.A., Ki-shawy A.T. Influence of Glycyrrhiza glabra extract on growth, gene expression of gut integrity, and Campylobacter jejuni colonization in broiler chickens. Frontiers in Veterinary Science, 2020, 7: 612063 (doi: 10.3389/fvets.2020.612063).
  • Paraskeuas V., Fegeros K., Palamidi I., Hunger C., Mountzouris K.C. Growth performance, nutrient digestibility, antioxidant capacity, blood biochemical biomarkers and cytokines expression in broiler chickens fed different phytogenic levels. Animal Nutrition, 2017, 3(2): 114-120 (doi: 10.1016/j.aninu.2017.01.005).
  • Al-Kelabi T.J.K., Mohamed M.F., Rezaeian M., Al-Karagoly H. Growth hormone and growth hormone receptor genes expression related with productive traits of broilers under the effectiveness of the sweet basil plant additive as a growth promoter. Advances in Animal and Veterinary Science, 2019, 7(5): 361-369 (doi: 10.17582/journal.aavs/2019/7.5.361.369).
  • Hosseini S.M., Chamani M., Seidavi A., Sadeghi A.A., Ansari-Pirsaraei Z. Effect of feeding Thymolina® powder on the gene expression IGF-1 in Ross 308 broiler chickens. Journal of Live-stock Science, 2016, 7: 274-279.
  • Ibrahim D., Moustafa A., Metwally A.S., Nassan M.A., Abdallah K., Eldemery F., Tufarelli V., Laudadio V., Kishawy A.T. Potential application of cornelian cherry extract on broiler chickens: growth, expression of antioxidant biomarker and glucose transport genes, and oxidative stability of frozen meat. Animals, 2021, 11(4): 1038 (doi: 10.3390/ani11041038).
  • Wen C., Jiang X., Ding L., Wang T., Zhou Y. Effects of dietary methionine on breast muscle growth, myogenic gene expression and IGF-I signaling in fast-and slow-growing broilers. Scientific Reports, 2017, 7: 1924 (doi: 10.1038/s41598-017-02142-z).
  • Elwan H.A., Elnesr S.S., Xu Q., Xie C., Dong X., Zou X. Effects of in ovo methionine-cysteine injection on embryonic development, antioxidant status, IGF-I and TLR4 gene expression, and jejunum histomorphometry in newly hatched broiler chicks exposed to heat stress during incuba-tion. Animals, 2019, 9(1): 25 (doi: 10.3390/ani9010025).
  • Subramaniyan S.A., Kang D.R., Park J.R., Siddiqui S.H., Ravichandiran P., Yoo D. J., Na C.S., Shim K.S. Effect of in ovo injection of l-arginine in different chicken embryonic development stages on post-hatchability, immune response, and Myo-D and myogenin proteins. Animals, 2019, 9(6): 357 (doi: 10.3390/ani9060357).
  • Khatun J., Loh T.C., Foo H.L., Akit H., Khan K.I. Growth performance, cytokine expression, and immune responses of broiler chickens fed a dietary palm oil and sunflower oil blend supple-mented with L-Arginine and varying concentrations of vitamin E. Frontiers in Veterinary Science, 2020, 7: 619 (doi: 10.3389/fvets.2020.00619).
  • Ricke S.C., Lee S.I., Kim S.A., Park S.H., Shi Z. Prebiotics and the poultry gastrointestinal tract microbiome. Poultry Science, 2020, 99(2): 670-677 (doi: 10.1016/j.psj.2019.12.018).
  • Markowiak P., Śliżewska K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 2018, 10: 21 (doi: 10.1186/s13099-018-0250-0).
  • Kikusato M. Phytobiotics to improve health and production of broiler chickens: functions beyond the antioxidant activity. Animal Bioscience, 2021, 34(3): 345-353 (doi: 10.5713/ab.20.0842).
  • Rabelo-Ruiz M., Ariza-Romero J.J., Zurita-González M.J., Martín-Platero A.M., Baños A., Ma-queda M., Valdivia E., Martínez-Bueno M., Peralta-Sánchez J.M. Allium-based phytobiotic en-hances egg production in laying hens through microbial composition changes in ileum and cecum. Animals, 2021, 11(2): 448 (doi: 10.3390/ani11020448).
  • Li S., Li J., Liu Y., Li C., Zhang R., Bao J. Effects of Intermittent mild cold stimulation on mRNA expression of immunoglobulins, cytokines, and toll-like receptors in the small intestine of broilers. Animals, 2020, 10(9): 1492 (doi: 10.3390/ani10091492).
Еще
Статья обзорная