Электрохимические методы контроля в медицинской диагностике
Автор: Слепченко Г.Б., Пикула Н.П., Дубова Н.М., Хлусов И.А., Быстрицкий Л.Д.
Журнал: Сибирский журнал клинической и экспериментальной медицины @cardiotomsk
Рубрика: В помощь практическому врачу
Статья в выпуске: 2-2 т.24, 2009 года.
Бесплатный доступ
Показано современное состояние и использование электрохимических методов в медицинской диагностике. Проведен обзор опубликованных за последние 5 лет работ по применению электрохимических методов при анализе биологических субстратов и лекарственных препаратов. Отмечены исследования авторов в области электроаналитического контроля за содержанием микроколичеств неорганических элементов и органических веществ в моче, крови, волосах, лекарственных препаратах и др. объектах.
Электрохимические методы, анализ, вольтамперометрия, органические элементы, неорганические вещества
Короткий адрес: https://sciup.org/14919050
IDR: 14919050
Текст научной статьи Электрохимические методы контроля в медицинской диагностике
* ГОУ ВПО «Томский политехнический университет»,
** ГОУ ВПО «Сибирский государственный медицинский университет Росздрава», *** Филиал ФГУП «НПО «Микроген» МЗ РФ в г. Томск «НПО «Вирион»
Медицинская диагностика и контроль качества лекарственных средств основаны на проведении анализов различными методами. Стандартными методами определения органических веществ в биообъектах и фармацевтических препаратах, рекомендованными отечественной фармакопеей, являются спектрофотометрические и хроматографические, включая метод высокоэффективной жидкостной хроматографии. Несмотря на бесспорное лидерство этих инструментальных методов, для определения органических веществ и неорганических элементов в медицинской диагностике в последние годы все чаще используют электрохимические методы. Это обусловлено тем, что возросшие требования к контролю материалов медицинской диагностики, в том числе биологических объектов, диктуют аналитикам новые задачи разработки высокочувствительных методик, позволяющих определять широкий спектр органических веществ и неорганических элементов в очень малых количествах – от нескольких мкг до нескольких мг, что возможно при использовании электрохимических методов.
Авторами проведены обобщение за последние 5 лет и систематизация публикаций, посвященных анализу, выявлению тенденций и современных возможностей электрохимических методов в контроле различных биологических проб и лекарственных средств на содержание неорганических элементов и органических веществ. Выделено более 150 работ, посвященных электрохимическим методам биологических проб (кровь и её фракции, моча, мышечные ткани, волосы и др.) и лекарственных препаратов (таблетки, капсулы, инъекции и др.), используемых для медицинской диагностики, мониторинга и контроля за состоянием здоровья людей и животных. Среди этих публикаций использованию методов вольтамперометрии (и её вариантов) посвящено около 100 работ, потенциометрии – 25, амперометрии и кондуктометрии – по 12.
Обобщенные сведения по разработанным методикам анализа проб биологического и медицинского характера приведены в таблице 1, где определяемые неорганические компоненты и органические вещества расположены в алфавитном порядке, а также указаны объекты анализа и пределы обнаружения опре-
Таблица 1
Возможности электрохимических методов при анализе биологических объектов и лекарственных препаратов
Определяемый компонент (показатель) |
Объект анализа |
Предел обнаружения |
Неорганические компоненты |
||
Алюминий, анионы хлорида, нитрата, сульфата, железо, кадмий, кальций, кобальт, марганец, медь, мышьяк, никель, ртуть, палладий, пероксид водорода, рутений, селен, серебро, свинец, тиоцианат-ионы, фториды, цианид-ионы, цинк, цис- и оксоплатина: Pt(2+) и Pt(4+), платина, рН, катионы K, Na, Ca и Mg, аммония |
Лекарственные препараты, кровь, моча, волосы, слюна, зубы и др. биосубстраты, лекарственные растения, печень овцы, бычья печень,межклеточное пространство мозга живых крыс |
От 0,5 х 10-3 до 1,9 х 10-9 г/мл |
Органические вещества |
||
Противомикробные, противовирусные и противопаразиторные средства |
||
Амикацин, аминогликозиды, ампициллин Антибиотики аминогликозидного ряда Артемизин, ацикловир Ацитромицин В-лактамные антибиотики, беназеприл гидрохлорид, бензилпенициллин, гатифлоксацин Гентамицин, имипенем, канамицин, левомицетин Ломефлоксацин, моноксифлоксацин, налидиксовая кислота, оксациллин, орфлоксацин, офлоксацин Противогрибковый кетоконазол, резорцин, салюзид Стрептомицин, тетрациклин, тобрамицин Цефподоксим-проксетил |
Лекарственные препараты, пищевые продукты и биологические материалы |
От 2 х 10 "6 до 1,84 х 10 " 10 моль/л |
Окончание таблицы 1
Методы потенциометрии и амперометрии, применяемые в медицине, основаны на использовании различных металлических и модифицированных электродов, а также специально изготовленных сенсоров и биосенсоров. Например, сенсоры на основе углеродных пастовых, стеклоуглеродных и стеклоуглеродных модифицированных электродов используют при амперометрическом определении в моче и крови различных анионов. Амперометрические биосенсоры применяют для определения содержания микро- количеств свинца, кадмия и железа в сыворотке крови. Разработан ряд потенциометрических и амперометрических микросенсоров на основе Si-датчиков для непрерывного контроля за различными медицинскими параметрами (рН, концентрация Na, Ca, K метаболитов глюкозы и лактата) в крови пациентов. Одновременное определение содержаний Ca, Pb, Tl в гемодиализных растворах предложено проводить потенциометрическим способом.
Для потенциометрического контроля биообъектов и фармпрепаратов применяют биосистемы для определения следовых органических веществ и неорганических элементов, таких как кадмий, медь, цинк, свинец, кобальт, никель, и др.
Среди вольтамперометрических методов используются такие варианты, как адсорбционная, инверсионная, дифференциальная импульсная, циклическая, квадратноволновая вольтамперометрия. Применяются электроды различных типов: ртутно-капаю-щие, ртутно-пленочные, пирографитовые, стеклоуглеродные. В ряде случаев возможно применение для анализа модифицированных угольно-пастовых электродов, чувствительных к определенному типу органических соединений, что позволяет избежать стадии их выделения или разделения. Методы инверсионной вольтамперометрии применимы для определения многих органических веществ и, прежде всего, тех, которые образуют нерастворимые соединения с ионами ртути на поверхности ртутных электродов, поляризованных при потенциалах анодного растворения ртути. Соединения удаляют с поверхности электрода при катодной поляризации, поэтому катодную инверсионную вольтамперометрию можно рассматривать как метод, пригодный для определения ряда органических соединений на уровне микро- и нанограммовых содержаний. Одним из радикальных путей повышения чувствительности определения многих органических соединений является предварительное электрохимическое концентрирование определяемого компонента раствора в электрохимической ячейке на выбранном индикаторном электроде, в оптимальном фоновом электролите при необходимом потенциале электролиза.
Использование разнообразных модификаций вольтамперометрического метода позволяет проводить серийные анализы в мутных и окрашенных средах, определять 10-7–10-5 моль/л примесей с высокой разрешающей способностью при малых объемах или навесках биологических субстанций, фармпрепаратов.
Среди способов предварительной подготовки проб сложного химического состава, к которым можно отнести биологические пробы, не потеряли значения методы классического мокрого озоления, а также разрабатываемые более быстрые и эффективные способы пробоподготовки с использованием микроволновых, ультрафиолетовых и ультразвуковых воздействий. Все большее внимание для контроля медицинских объектов электроаналитиков привлекают методы пробоподготовки, не связанные с полным озолением матрицы. Перспективным на этом этапе представляется использование различных экстракционных систем с воздействием электромагнитных и акустических полей. Остатки органических веществ успешно изолируют путем создания модифицированных электродов, которые одновременно селективно и чувствительно реагируют на определяемый компонент. Увеличилось внимание электроаналитиков к созданию полностью автоматизированных и миниатюрных систем контроля сложных биологических объектов в условиях длительного или дистанционного мониторинга, in situ, в режиме real time. 104
Одной из ведущих в России школ, занимающихся развитием и внедрением электрохимических методов анализа, является созданная более 40 лет тому назад научно-исследовательская лаборатория микропримесей Томского политехнического университета. В аккредитованной научно-исследовательской лаборатории микропримесей занимаются научнотеоретическим и практическим развитием таких электрохимических методов, как потенциометрия, амперометрия и вольтамперометрия. Эти методы занимают в настоящее время устойчивое передовое место среди других физико-химических методов анализа благодаря своей высокой чувствительности, экономичности, простоте и дешевизне оборудования, автоматизации и компьютеризации анализа.
Основной задачей электроаналитического контроля для целей медицинской диагностики является расширение возможности определения как неорганических, так и органических компонентов в широкой области диапазона определяемых концентраций. Например, разработке и применению вольтамперометрической методики многоэлементного анализа проб волос на содержание 9 микроэлементов (Cd, Co, Cu, Ni, Mn, As, Pb, Se, Zn) посвящена работа [1].
Предложен оригинальный алгоритм проведения анализа, включающий все этапы, начиная от предварительной подготовки проб до выдачи результатов анализа, исходя из одной навески образца, проводя измерения с использованием различных электродов и фоновых электролитов для определения содержания микроэлементов. Предварительно пробу волос обезжиривают ацетоном и промывают бидистилли-рованной водой. Из высушенной пробы берут аналитическую навеску волос (0,05 г), которую обрабатывают смесью азотной кислоты и перекиси водорода в присутствии нитрата магния. Затем проводят измерения методом вольтамперометрии. Разработанная методика вольтамперометрического анализа волос человека позволяет определить элементы в следующих диапазонах: цинк – от 0,01 до 1000; кадмий – от 0,01 до 50; свинец от 0,05 до 50; медь – от 0,01 до 20; железо – от 5 до 150; мышьяк – от 0,02 до 5; марганец – от 0,5 до 50; никель – от 0,5 до 50; селен – от 0,05 до 10 мг/кг с относительной погрешностью, не превышающей 30%. Методика аттестована и внесена в Федеральный реестр методик выполнения измерений, применяемых в сферах распространения государственного метрологического контроля и надзора.
Выполнены исследования, на основе которых разработана вольтамперометрическая методика определения урана в моче на уровне 0,0001 мг/л (5x10-1° моль/л) [2]. Такое низкое содержание урана можно определить только после отделения его от матрицы пробы и подбора условий адсорбционного концентрирования урана (уранила) на поверхности электрода. Проведены исследования по использованию метода амперометрического титрования для контроля содержания некоторых компонентов: ионов цинка, кальция, фторид- и хромат-ионов, аскорбиновой кислоты в ряде фармацевтических и биологических объектов.
Изучено электрохимическое поведение методами вольтамперометрии ряда основных микроэлементов (ртути, йода, селена, мышьяка и железа), а также органических веществ-антибиотиков (левомицетина, стрептомицина, тетрациклина, азитромицина и др.), витаминов (В1, В2, С, Е и др.) и флавоноидов (кверцетина, рутина, гесперидина и др.). Для многих органических веществ вольтамперные кривые для концентрации на уровне 10-7–10-9 моль/л получены впервые. Применение модифицированных золотом графитовых электродов в режиме in situ позволило улучшить метрологические характеристики для селена (получение воспроизводимых результатов) и для ртути (повышение чувствительности). Впервые модифицированные электроды стали применяться в серийных анализах благодаря тому, что были отработаны условия их получения, регенерации и оптимизированы условия получения аналитических сигналов элементов. Установлены условия количественного определения водорастворимых витаминов В1, В2, В6, С, РР, антибиотиков – левомицетина, тетрациклина гидрохлорида, фторурацила, адриабластина и других лекарственных веществ, а также флавоноидов методом вольтамперометрии. Предварительная подготовка проб по сравнению с другими методами существенно уменьшена во времени из-за возможности проведения вольтамперометрических измерений в эффективно установленных условиях проведения электродного процесса в мутных и окрашенных средах. На основе проведенных исследований разработаны методики определения ряда веществ в биологических средах и препаратах.
Основными тенденциями в применении электрохимических методов в медицинской диагностике следующие:
-
• разработка новых потенциометрических, амперометрических и кулонометрических сенсоров и датчиков, позволяющих селективно определять индивидуальные вещества;
-
• разработка биосенсоров электрохимического определения веществ;
-
• разработка иммуносенсоров, наиболее часто используемых при определении антител и антигенов;
-
• расширение числа органических веществ, определяемых электрохимическими методами;
-
• широкое использование метода вольтамперометрии во всех её вариантах для анализа медицинских объектов и диагностики заболеваний.
В заключение отметим, что использование разработанных методов пробоподготовки, их оптимизации, а также аттестация и стандартизация методик выполнения измерений делают электрохимические методы рутинным для анализа биологических объектов и фармпрепаратов. Аттестация методик выполнения измерений проводится аккредитованной службой
Томского политехнического университета с дальнейшим внесением их в единый Федеральный реестр методик выполнения измерений, допущенных в сферах распространения государственного метрологического контроля и надзора. Все эти мероприятия способствуют тому, что метод уже внедрен и используется в более чем 600 испытательных лабораториях России, конкурируя с широко распространенными методами по таким характеристикам, как чувствительность, точность, возможность одновременного определения нескольких элементов и низкая стоимость оборудования. Методики успешно используются в аккредитованных испытательных лабораториях и центрах Ростехрегулирования, Роспотребнадзора, управлений ветеринарии, медицины и др. по всей России.
Исследования выполнены в рамках федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2012 годы» (государственный контракт № 02.512.11.2285).
Список литературы Электрохимические методы контроля в медицинской диагностике
- Слепченко Г.Б., Захарова Э.А., Черемпей Е.Г. Возможности и применение метода инверсионной вольтамперометрии как индикатора оценки содержания микроэлементов в волосах//Изв. вузов. Химия и хим. технология. -2002. -Т. 45. -№ 3. -С. 89-94.
- Захарова Э.А., Филичкина О.Г., Пикула Н.П., Слепченко Г.Б. Определение урана в биообъектах методом адсорбционной вольтамперометрии.//Зав. лаборатория и диагностика материалов. -2002. -Т. 68. -№11. -С. 3-7.