Элементарные трансвекции в надгруппах нерасщепимого максимального тора
Автор: Дряева Роксана Юрьевна, Койбаев Владимир Амурханович
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 4 т.17, 2015 года.
Бесплатный доступ
Говорят, что подгруппа $H$ полной линейной группы $GL(n, k)$ богата трансвекциями, если она содержит элементарные трансвекции $t_{ij}(\alpha)$ на всех позициях $(i, j)$, $i\neq j$. В настоящей работе мы доказываем, что если подгруппа $H$ содержит нерасщепимый максимальный тор и элементарную трансвекцию на некоторой одной позиции, то она богата трансвекциями. Доказано также, что если подгруппа $H$ содержит циклическую матрицу-перестановку порядка $n$ и элементарную трансвекцию позиции $(i, j)$ такой, что НОД $(i-j, n) = 1$, то подгруппа $H$ богата трансвекциями.
Надгруппа, промежуточная подгруппа, нерасщепимый максимальный тор, трансвекция, элементарная трансвекция
Короткий адрес: https://sciup.org/14318516
IDR: 14318516
Список литературы Элементарные трансвекции в надгруппах нерасщепимого максимального тора
- Боревич З. И. О подгруппах линейных групп, богатых трансвекциями//Зап. науч. семинаров ЛОМИ.-1978.-Т. 75.-С. 22-31.
- Койбаев В. А. Трансвекции в подгруппах полной линейной группы, содержащих нерасщепимый максимальный тор//Алгебра и анализ.-2009.-Т. 21, № 5.-C. 70-86.
- ПОДГРУППЫ ГРУППЫ GL(2,K), СОДЕРЖАЩИЕ НЕРАСЩЕПИМЫЙ ТОР Койбаев В.А. В. А. Койбаев; Российская акад. наук, Владикавказский науч. цент, Южный математический ин-т. Владикавказ, 2009. Сер. Итоги науки. Южный федеральный округ