Элементы железобетонные, усиленные методом анкеровки

Автор: Корсун В.И., Виноградова Н.А.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (109), 2023 года.

Бесплатный доступ

Объектом исследования являются сталежелезобетонные элементы, в которых различные способы анкеровки обеспечивают совместную работу бетона и стали.

Сталежелезобетон, тонкий стальной профиль, методы анкеровки, испытание на сдвиг, деформации, растяжение, расчет

Короткий адрес: https://sciup.org/143182724

IDR: 143182724   |   DOI: 10.4123/CUBS.109.32

Список литературы Элементы железобетонные, усиленные методом анкеровки

  • Ahmed, I.M., Tsavdaridis, K.D. (2019) The evolution of composite flooring systems: applications, testing, modelling and eurocode design approaches. Journal of Constructional Steel Research, 155, 286–300. https://doi.org/10.1016/J.JCSR.2019.01.007.
  • Thamrin R., Zaidir., Wahyuni A. (2023) Shear capacity of reinforced concrete beams strengthened with web bonded steel bars or steel plates. Results in Engineering, 100953. https://doi.org/10.1016/j.rineng.2023.100953.
  • Travush, V.I., Konin, D. V, Krylov, A.S. (2018) Strength of composite steel and concrete beams of highperformance concrete. Magazine of Civil Engineering, 79(3), 36–44. https://doi.org/10.18720/MCE.79.4.
  • Gholamhoseini A., Gilbert R.I., Bradford M. (2018) Long-Term Behavior of Continuous Composite Concrete Slabs with Steel Decking. Aci Structural Journal, 115, 439–449. https://doi.org/10.14359/51701133.
  • Gholamhoseini, A., Gilbert, R.I., Bradford, M.A. (2014) Creep and Shrinkage Effects on the Bond-SlipCharacteristics and Ultimate Strength of Composite Slabs. Journal of Civil Engineering and Architecture, 82, 1085–1097. https://doi.org/10.17265/1934-7359/2014.09.001.
  • Ataei, A., Bradford, M.A., Valipour, H. (2016) Sustainable Design of Deconstructable Steel-Concrete Composite Structures. Procedia Engineering, 145, 1153–1160. https://doi.org/10.1016/J.PROENG.2016.04.149.
  • Waldmann D., May A., Thapa V.B. (2017) Influence of the sheet profile design on the composite action of slabs made of lightweight woodchip concrete. Construction and Building Materials, 148, 887–899.https://doi.org/10.1016/j.conbuildmat.2017.04.193.
  • Derysz J., Lewinski P.M., Wiech P.P. (2017) New concept of steel-reinforced concrete floor slab in the light of computation model and experimental research. Procedia Engineering, 193, 168–175. https://doi.org/10.1016/j.proeng.2017.06.200.
  • Bily P., Fladr J., Kohoutkova A. (2017) Behavior of anchorage areas in the steel-concrete composite structure loaded by longitudinal shear forces. Procedia Engineering, 172, 104–110. https://doi.org/10.1016/j.proeng.2017.02.029.
  • Monaco A., Pagnotta S., Colajanni P., Mendola L. (2023) Innovative connections for steel-concrete-trussed beams: a patented solution. Procedia Structural Integrity, 44, 1925–1932. https://doi.org/10.1016/j.prostr.2023.01.246.
  • Baniya, W.J., Zaki, W., Farrag, C.M.R., Rashed, D.A. (2020) Behavior of composite pre-flat slabs in resisting punching shear forces. Alexandria Engineering Journal, 59(1), 333–347. https://doi.org/10.1016/j.aej.2019.12.045.
  • Fasan, M., Bedon C., Amadio C. (2023) Spiral-based confinement in slabs for the seismic performance enhancement of steel-concrete composite frames. Procedia Structural Integrity,44, 1045–1051. https://doi.org/10.1016/j.prostr.2023.01.135.
  • Liu J., Huang S., Li J., Chen Y.F. (2021) Vibration Serviceability of Large-Span Steel–Concrete Composite Beam with Precast Hollow Core Slabs Under Walking Impact. Engineering, 19. https://doi.org/10.1016/j.eng.2021.04.025.
  • Mohammed T.A., Abebe S. (2022) Numerical investigation of steel-concrete composite (SCC) beam subjected to combined blast-impact loading. Heliyon, 8(9). https://doi.org/10.1016/j.heliyon.2022.e10672.
  • Medvedev V.N., Semeniuk S.D. (2016) Durability and deformability of braced bending elements with external sheet reinforcement. Magazine of Civil Engineering, 3, 3–15. https://doi.org/10.5862/MCE.63.1.
  • Gravit, M., Nedviga, E., Vinogradova, N., Teplova, Z. (2017) Fire resistance of prefabricated monolithic slab. MATEC Web of Conferences, 106, 02025. https://doi.org/10.1051/matecconf/201710602025.
  • Snigireva, V.A., Gorynin, G.L. (2018) The nonlinear stress-strain state of the concrete-filled steel tube structures. Magazine of Civil Engineering, 83(7), 73–82. https://doi.org/10.18720/MCE.83.7.
  • Zamaliev F.S., Zakirov M.A. (2018) Stress-strain state of a steel-reinforced concrete slab under longterm. Magazine of Civil Engineering, 83(7), 12–23. https://doi.org/10.18720/MCE.83.2.
  • Zamaliev F.S., Tamrazyan A.G. (2023) To the evaluation of the carrying capacity of steel concrete beams on the basis of bent profiles. Vestnik MGSU, 8(18), 1220–1229. https://doi.org/10.22227/1997-0935.2023.8.1220-1229.
  • Szumigała, M., Polus, Ł. (2017) An Numerical Simulation of an Aluminium-concrete Beam. Procedia Engineering, 172, 1086–1092. https://doi.org/10.1016/J.PROENG.2017.02.167.
  • Fattakhova A.I. (2020) Impact of horizontal loads on the work of stud bolts in combined floor slabs. Vestnik MGSU, 1(15), 31–42. https://doi.org/10.22227/1997-0935.2020.1.31-42.
  • Gimranov L.R., Fattakhova A.E. (2021) Flexible stop's force determining method in a combined plate using profiled flooring. Vestnik MGSU, 8(16), 997–1005. https://doi.org/10.22227/1997-0935.2021.8.997-1005.
  • Tonkih G.P., Chesnokov D.A. (2021) An experimental study of a shear connection of steel-reinforced concrete slabs with angle shear studs. Vestnik MGSU, 2(16), 144–152. https://doi.org/10.22227/1997-0935.2021.2.144-152.
  • Korsun V.I., Vinogradova N.A., Shvets G.A. (2020) Bearing Capacity of Reinforced Concrete T-beams with a SteelProfile. Construction of Unique Buildings and Structures, 89, 8904. https://doi.org/10.18720/CUBS.89.4.
  • STO-33051099.001-2015. Organization standard. Typical solutions in the construction of frame-beam prefabricated monolithic floors MARKO with blocks of aerated concrete. https://edrid.ru/rid/217.015.9442.html.
  • Korsun V.I., Morozov V.I., Tamrazyan A.G., Alekseytsev A.V. (2023) Nonlinear Deformation Model for Analysis of Temperature Effects on Reinforced Concrete Beam Elements. Buildings, 13, 1–16. https://doi.org/10.3390/buildings13112734
  • Korsun V.I., Khon K. (2023) Strains and strength of reinforced concrete beams manufacturing by high-strength concrete for non-coincident planes of temperature gradient and loading. Construction of Unique Buildings and Structures, 109, 10914. https://doi.org/10.4123/CUBS.109.14
  • SP 63.13330.2018. Concrete and reinforced concrete structures. General provisions. https://docs.cntd.ru/document/554403082.
  • SP 266.1325800.2016. Composite steel and concrete structures. Design rules. https://docs.cntd.ru/document/456044285.
  • SP 16.13330.2017. Steel structures. https://docs.cntd.ru/document/456069588.
Еще
Статья научная