Энергоэффективные конструкции и технологии в аддитивном строительстве

Автор: Ольшевский В.Я., Немова Д.В., Донцова А.Е., Андреева Тарасова Д.С., Котов Е.В.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (109), 2023 года.

Бесплатный доступ

Объектом исследования является повышение термического сопротивления ограждающих конструкций зданий, созданных с применением аддитивных технологий.

Ограждающая конструкция, энергоэффективность, аддитивные технологии, строительная 3d-печать, бетонная 3d-печать, аддитивное строительство

Короткий адрес: https://sciup.org/143182706

IDR: 143182706   |   DOI: 10.4123/CUBS.109.13

Список литературы Энергоэффективные конструкции и технологии в аддитивном строительстве

  • Buswell, R.A., Thorpe, A., Soar, R.C. and Gibb, A.G.F. (2008) Design, Data and Process Issues for Mega-Scale Rapid Manufacturing Machines Used for Construction. Automation in Construction, 17, 923–929. https://doi.org/10.1016/j.autcon.2008.03.001.
  • Buswell, R.A., Soar, R.C., Gibb, A.G.F. and Thorpe, A. (2007) Freeform Construction: Mega-Scale Rapid Manufacturing for Construction. Automation in Construction, 16, 224–231. https://doi.org/10.1016/j.autcon.2006.05.002.
  • Dobrzyńska, E., Kondej, D., Kowalska, J. and Szewczyńska, M. (2021) State of the Art in Additive Manufacturing and Its Possible Chemical and Particle Hazards—Review. Indoor Air, John Wiley and Sons Inc, 31, 1733–1758. https://doi.org/10.1111/ina.12853.
  • Khan, S.A., Koç, M. and Al-Ghamdi, S.G. (2021) Sustainability Assessment, Potentials and Challenges of 3D Printed Concrete Structures: A Systematic Review for Built Environmental Applications. Journal of Cleaner Production, Elsevier Ltd, 303, 127027. https://doi.org/10.1016/j.jclepro.2021.127027.
  • Sakin, M. and Kiroglu, Y.C. (2017) 3D Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM. Energy Procedia, 134, 702–711. https://doi.org/10.1016/j.egypro.2017.09.562.
  • Gosselin, C., Duballet, R., Roux, P., Gaudillière, N., Dirrenberger, J. and Morel, P. (2016) Large-Scale 3D Printing of Ultra-High Performance Concrete – a New Processing Route for Architects and Builders. Materials & Design, Elsevier Ltd, 100, 102–109. https://doi.org/10.1016/j.matdes.2016.03.097.
  • Nazarian, S., Duarte, J.P., Bilén, S.G., Memari, A., Radlinska, A., Meisel, N. and Hojati, M. (2021) Additive Manufacturing of Architectural Structures: An Interplay Between Materials, Systems, and Design. Advances in Science, Technology and Innovation, Springer Nature, 111–119. https://doi.org/10.1007/978-3-030-35533-3_15.
  • Lowke, D., Dini, E., Perrot, A., Weger, D., Gehlen, C. and Dillenburger, B. (2018) Particle-Bed 3D Printing in Concrete Construction – Possibilities and Challenges. Cement and Concrete Research, Elsevier Ltd, 112, 50–65. https://doi.org/10.1016/j.cemconres.2018.05.018.
  • Suntharalingam, T., Gatheeshgar, P., Upasiri, I., Poologanathan, K., Nagaratnam, B., Rajanayagam, H. and Navaratnam, S. (2021) Numerical Study of Fire and Energy Performance of Innovative Light-Weight 3D Printed Concrete Wall Configurations in Modular Building System. Sustainability, MDPI AG, 13, 2314. https://doi.org/10.3390/su13042314.
  • Alkhalidi, A. and Hatuqay, D. (2020) Energy Efficient 3D Printed Buildings: Material and Techniques Selection Worldwide Study. Journal of Building Engineering, Elsevier Ltd, 30, 101286. https://doi.org/10.1016/j.jobe.2020.101286.
  • Marais, H., Christen, H., Cho, S., De Villiers, W. and Van Zijl, G. (2021) Computational Assessment of Thermal Performance of 3D Printed Concrete Wall Structures with Cavities. Journal of Building Engineering, Elsevier Ltd, 41, 102431. https://doi.org/10.1016/j.jobe.2021.102431.
  • Zhang, T., Tan, Y., Yang, H. and Zhang, X. (2016) The Application of Air Layers in Building Envelopes: A Review. Applied Energy, Elsevier, 165, 707–734. https://doi.org/10.1016/j.apenergy.2015.12.108.
  • Lee, Y.H., Chua, N., Amran, M., Yong Lee, Y., Hong Kueh, A.B., Fediuk, R., Vatin, N. and Vasilev, Y. (2021) Thermal Performance of Structural Lightweight Concrete Composites for Potential Energy Saving. Crystals, MDPI AG, 11, 461. https://doi.org/10.3390/cryst11050461.
  • Robati, M., McCarthy, T.J. and Kokogiannakis, G. (2016) Incorporating Environmental Evaluation and Thermal Properties of Concrete Mix Designs. Construction and Building Materials, Elsevier Ltd, 128, 422–435. https://doi.org/10.1016/j.conbuildmat.2016.10.092.
  • Prasittisopin, L., Pongpaisanseree, K., Jiramarootapong, P. and Snguanyat, C. (2020) Thermal and Sound Insulation of Large-Scale 3D Extrusion Printing Wall Panel. RILEM Bookseries, Springer, 1174–1182. https://doi.org/10.1007/978-3-030-49916-7_111.
  • Craveiro, F., Bartolo, H.M., Gale, A., Duarte, J.P. and Bartolo, P.J. (2017) A Design Tool for Resource-Efficient Fabrication of 3d-Graded Structural Building Components Using Additive Manufacturing. Automation in Construction, Elsevier B.V., 82, 75–83. https://doi.org/10.1016/j.autcon.2017.05.006.
  • He, Y., Zhang, Y., Zhang, C. and Zhou, H. (2020) Energy-Saving Potential of 3D Printed Concrete Building with Integrated Living Wall. Energy and Buildings, Elsevier Ltd, 222, 110110. https://doi.org/10.1016/j.enbuild.2020.110110.
  • Harmati, N., Jakšić, Ž. and Vatin, N. (2015) Energy Consumption Modelling via Heat Balance Method For Energy Performance of a Building. Procedia Engineering, Elsevier Ltd, 117, 786–794. https://doi.org/10.1016/j.proeng.2015.08.238.
  • Pérez-Lombard, L., Ortiz, J. and Pout, C. (2008) A Review on Buildings Energy Consumption Information. Energy and Buildings, 40, 394–398. https://doi.org/10.1016/j.enbuild.2007.03.007.
  • González-Torres, M., Pérez-Lombard, L., Coronel, J.F., Maestre, I.R. and Yan, D. (2022) A Review on Buildings Energy Information: Trends, End-Uses, Fuels and Drivers. Energy Reports, 8, 626–637. https://doi.org/10.1016/j.egyr.2021.11.280.
  • Masoso, O.T. and Grobler, L.J. (2010) The Dark Side of Occupants’ Behaviour on Building Energy Use. Energy and Buildings, 42, 173–177. https://doi.org/10.1016/j.enbuild.2009.08.009.
  • Zhao, H. and Magoulès, F. (2012) A Review on the Prediction of Building Energy Consumption. Renewable and Sustainable Energy Reviews, 16, 3586–3592. https://doi.org/10.1016/j.rser.2012.02.049.
  • Thakur, N., Prasath Kumar, V.R. and Balasubramanian, M. (2018) Comparative Energy Audit of Building Models Using BIM for the Sustainable Development. Journal of Advanced Research in Dynamical and Control Systems, Institute of Advanced Scientific Research, Inc., 10, 986–992. http://jardcs.org/backissues/abstract.php?archiveid=4213.
  • Ajayi, S.O., Oyedele, L.O. and Ilori, O.M. (2019) Changing Significance of Embodied Energy: A Comparative Study of Material Specifications and Building Energy Sources. Journal of Building Engineering, Elsevier Ltd, 23, 324–333. https://doi.org/10.1016/j.jobe.2019.02.008.
  • Singh, P. and Sadhu, A. (2019) Multicomponent Energy Assessment of Buildings Using Building Information Modeling. Sustainable Cities and Society, Elsevier Ltd, 49, 101603. https://doi.org/10.1016/j.scs.2019.101603.
  • Cheung, C.K., Fuller, R.J. and Luther, M.B. (2005) Energy-Efficient Envelope Design for High-Rise Apartments. Energy and Buildings, 37, 37–48. https://doi.org/10.1016/j.enbuild.2004.05.002.
  • Yang, S., Wi, S., Park, J.H., Cho, H.M. and Kim, S. (2019) Novel Proposal to Overcome Insulation Limitations Due to Nonlinear Structures Using 3D Printing: Hybrid Heat-Storage System. Energy and Buildings, Elsevier Ltd, 197, 177–187. https://doi.org/10.1016/j.enbuild.2019.05.048.
  • Bhamare, D.K., Rathod, M.K. and Banerjee, J. (2020) Numerical Model for Evaluating Thermal Performance of Residential Building Roof Integrated with Inclined Phase Change Material (PCM) Layer. Journal of Building Engineering, Elsevier Ltd, 28, 101018. https://doi.org/10.1016/j.jobe.2019.101018.
  • Nemova, D., Kotov, E., Andreeva, D., Khorobrov, S., Olshevskiy, V., Vasileva, I., Zaborova, D. and Musorina, T. (2022) Experimental Study on the Thermal Performance of 3D-Printed Enclosing Structures. Energies, 15, 4230. https://doi.org/10.3390/en15124230.
  • Klyuev, S. V., Klyuev, A. V., Vatin, N.I. and Shorstova, E.S. (2021) Technology of 3-D Printing of Fiber Reinforced Mixtures. Lecture Notes in Civil Engineering, Springer Science and Business Media Deutschland GmbH, 224–230. https://doi.org/10.1007/978-3-030-67654-4_25.
  • Nair, A., Aditya, S.D., Adarsh, R.N., Nandan, M., Dharek, M.S., Sreedhara, B.M., Prashant, S.C. and Sreekeshava, K.S. (2020) Additive Manufacturing of Concrete: Challenges and Opportunities. IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 814, 012022. https://doi.org/10.1088/1757-899X/814/1/012022.
  • Amran, M., Abdelgader, H.S., Onaizi, A.M., Fediuk, R., Ozbakkaloglu, T., Rashid, R.S.M. and Murali, G. (2022) 3D-Printable Alkali-Activated Concretes for Building Applications: A Critical Review. Construction and Building Materials, 319, 126126. https://doi.org/10.1016/j.conbuildmat.2021.126126.
  • Buswell, R.A., Leal de Silva, W.R., Jones, S.Z. and Dirrenberger, J. (2018) 3D Printing Using Concrete Extrusion: A Roadmap for Research. Cement and Concrete Research, Elsevier Ltd, 112, 37–49. https://doi.org/10.1016/j.cemconres.2018.05.006.
Еще
Статья научная