Эпигенетические факторы сердечной недостаточности (обзор)

Автор: Кучер А. Н., Назаренко М. С.

Журнал: Сибирский журнал клинической и экспериментальной медицины @cardiotomsk

Рубрика: Обзоры и лекции

Статья в выпуске: 4 т.38, 2023 года.

Бесплатный доступ

Сердечная недостаточность (СН) - широко распространенный синдром, приводящий к существенному снижению качества жизни пациентов. Одним из перспективных направлений в изучении СН является эпигенетика, позволяющая рассматривать патогенез данного синдрома на новом молекулярном уровне. Настоящей обзор посвящен обобщению исследований, связанных с изучением эпигенетических процессов (модификация гистонов, метилирование ДНК, изменение экспрессии регуляторных некодирующих РНК), сопровождающих развитие СН. Эпигенетические исследования СН не только подтвердили клиническую и этиологическую гетерогенность данного синдрома, но и расширили спектр маркеров, потенциально значимых для диагностики, а также открыли новые стратегии разработки лекарственных препаратов.

Еще

Сердечная недостаточность, кардиомиопатии, эпигенетические факторы

Короткий адрес: https://sciup.org/149144444

IDR: 149144444   |   DOI: 10.29001/2073-8552-2023-38-4-61-69

Список литературы Эпигенетические факторы сердечной недостаточности (обзор)

  • GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789-1858. https://doi.org/10.1016/S0140-6736(18)32279-7.
  • Snipelisky D., Chaudhry S.P., Stewart G.C. The many faces of heart failure. Card. Electrophysiol. Clin. 2019;11(1):11-20. https://doi.org/10.1016/j.ccep.2018.11.001.
  • Кучер А.Н., Назаренко М.С. Генетические факторы сердечной недостаточности (обзор). Сибирский журнал клинической и экспериментальной медицины. 2023; 38(2):38-43.. https://doi.org/10.29001/2073-8552-2023-38-2-38-43.
  • Zhu M., Zhang C., Zhang Z., Liao X., Ren D., Li R. et al. Changes in transcriptomic landscape in human end-stage heart failure with distinct etiology. iScience. 2022;25(3):103935. https://doi.org/10.1016/j.isci.2022.103935.
  • Li X., Tan W., Zheng S., Pyle W.G., Zhu C., Chen H. et al. Differential mRNA expression and circular RNA-based competitive endogenous RNA networks in the three stages of heart failure in transverse aortic constriction mice. Front. Physiol. 2022;13:777284. https://doi.org/10.3389/fphys.2022.777284.
  • Peterlin A., Počivavšek K., Petrovič D., Peterlin B. The Role of microRNAs in heart failure: a systematic review. Front. Cardiovasc. Med. 2020;7:161. https://doi.org/10.3389/fcvm.2020.00161.
  • Gorica E., Mohammed S.A., Ambrosini S., Calderone V., Costantino S., Paneni F. Epi-drugs in heart failure. Front. Cardiovasc. Med. 2022;9:923014. https://doi.org/10.3389/fcvm.2022.923014.
  • Huang C.K., Kafert-Kasting S., Thum T. Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ. Res. 2020;126(5):663-678. https://doi.org/10.1161/CIRCRESAHA.119.315856.
  • McKinsey T.A., Foo R., Anene-Nzelu C.G., Travers J.G., Vagnozzi R.J., Weber N. et al. Emerging epigenetic therapies of cardiac fibrosis and remodeling in heart failure: from basic mechanisms to early clinical development. Cardiovasc. Res. 2022;cvac142. https://doi.org/10.1093/cvr/cvac142.
  • Ambrosini S., Gorica E., Mohammed S.A., Costantino S., Ruschitzka F., Paneni F. Epigenetic remodeling in heart failure with preserved ejection fraction. Curr. Opin. Cardiol. 2022;37(3):219-226. https://doi.org/10.1097/HCO.0000000000000961.
  • Pagiatakis C., Di Mauro V. The Emerging role of epigenetics in therapeutic targeting of cardiomyopathies. Int. J. Mol. Sci. 2021;22(16):8721. https://doi.org/10.3390/ijms22168721.
  • Papait R., Serio S., Condorelli G., Gu Z., El Bouhaddani S., Yiangou L. et al. Role of the epigenome in heart failure. Physiol. Rev. 2020;100(4):1753-1777. https://doi.org/10.1152/physrev.00037.2019.
  • Ameer S.S., Hossain M.B., Knöll R. Epigenetics and heart failure. Int. J. Mol. Sci. 2020;21(23):9010. https://doi.org/10.3390/ijms21239010.
  • Liu C.F., Abnousi A., Bazeley P., Ni Y., Morley M., Moravec C.S. et al. Global analysis of histone modifications and long-range chromatin interactions revealed the differential cistrome changes and novel transcrip tional players in human dilated cardiomyopathy. J. Mol. Cell. Cardiol. 2020;145:30-42. https://doi.org/10.1016/j.yjmcc.2020.06.001.
  • Pei J., Schuldt M., Nagyova E., Gu Z., El Bouhaddani S., Yiangou L. et al. Multi-omics integration identifies key upstream regulators of pathomechanisms in hypertrophic cardiomyopathy due to truncating MYBPC3 mutations. Clin. Epigenetics. 2021;13(1):61. https://doi.org/10.1186/s13148-02101043-3.
  • Yan F., Chen Z., Cui W. H3K9me2 regulation of BDNF expression via G9a partakes in the progression of heart failure. BMC Cardiovasc. Disord. 2022;22(1):182. https://doi.org/10.1186/s12872-022-02621-w.
  • Glezeva N., Moran B., Collier P., Moravec C.S., Phelan D., Donnellan E. et al. Targeted DNA methylation profiling of human cardiac tissue reveals novel epigenetic traits and gene deregulation across different heart failure patient subtypes. Circ. Heart Fail. 2019;12(3):e005765. https://doi.org/10.1161/CIRCHEARTFAILURE.118.005765.
  • Lin Z., Chang J., Li X., Wang J., Wu X., Liu X. et al. Association of DNA methylation and transcriptome reveals epigenetic etiology of heart failure. Funct. Integr. Genomics. 2022;22(1):89-112. https://doi.org/10.1007/s10142021-00813-9.
  • Ito E., Miyagawa S., Fukushima S., Yoshikawa Y., Saito S., Saito T. et al. Histone modification is correlated with reverse left ventricular remodeling in nonischemic dilated cardiomyopathy. Ann. Thorac. Surg. 2017;104(5):1531-1539. https://doi.org/10.1016/j.athoracsur.2017.04.046.
  • Zhang C.L., McKinsey T.A., Chang S., Antos C.L., Hill J.A., Olson E.N. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell. 2002;110(4):479-488. https://doi.org/10.1016/s00928674(02)00861-9.
  • Pepin M.E., Ha C.M., Crossman D.K., Litovsky S.H., Varambally S., Barchue J.P. et al. Genome-wide DNA methylation encodes cardiac transcriptional reprogramming in human ischemic heart failure. Lab Invest. 2019;99(3):371-386. https://doi.org/10.1038/s41374-018-0104-x.
  • Gi W.T., Haas J., Sedaghat-Hamedani F., Kayvanpour E., Tappu R., Lehmann D.H. et al. Epigenetic regulation of alternative mRNA splicing in dilated cardiomyopathy. J. Clin. Med. 2020;9(5):1499. https://doi.org/10.3390/jcm9051499.
  • Bain C.R., Ziemann M., Kaspi A., Khan A.W., Taylor R., Trahair H. et al. DNA methylation patterns from peripheral blood separate coronary artery disease patients with and without heart failure. ESC Heart Fail. 2020;7(5):2468-2478. https://doi.org/10.1002/ehf2.12810.
  • Wang S., Lv T., Chen Q., Yang Y., Xu L., Zhang X. et al. Transcriptome sequencing and lncRNA-miRNA-mRNA network construction in cardiac fibrosis and heart failure. Bioengineered. 2022;13(3):7118-7133. https://doi.org/10.1080/21655979.2022.2045839.
  • Zhao X., Sui Y., Ruan X., Wang X., He K., Dong W. et al. A deep learning model for early risk prediction of heart failure with preserved ejection fraction by DNA methylation profiles combined with clinical features. Clin. Epigenetics. 2022;14(1):11. https://doi.org/10.1186/s13148-022-01232-8.
  • Shen N.N., Wang J.L., Fu Y.P. The microRNA expression profiling in heart failure: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2022;9:856358. https://doi.org/10.3389/fcvm.2022.856358.
  • Kalampogias A., Oikonomou E., Siasos G., Theofilis P., Dimitropoulos S., Gazouli M. et al. Differential expression of microRNAs in acute and chronic heart failure. Curr. Med. Chem. 2022;29(30):5130-5138. https://doi.org/10.2174/0929867329666220426095655.
  • Athavale B., Pathak J. Study of the role of plasma NT-proBNP in the diagnosis of heart failure. J. Assoc. Physicians India. 2022;70(7):11-12. https://doi.org/10.5005/japi-11001-0046.
  • Wu Y., Wang H., Li Z., Cheng J., Fang R., Cao H. et al. Subtypes identification on heart failure with preserved ejection fraction via network enhancement fusion using multi-omics data. Comput. Struct. Biotechnol. J. 2021;19:1567-1578. https://doi.org/10.1016/j.csbj.2021.03.010.
  • Deng Z., Yao J., Xiao N., Han Y., Wu X., Ci C. et al. DNA methyltransferase 1 (DNMT1) suppresses mitophagy and aggravates heart failure via the microRNA-152-3p/ETS1/RhoH axis. Lab. Invest. 2022;102(8):782- 793. https://doi.org/10.1038/s41374-022-00740-8.
  • Han P., Li W., Lin C.H., Yang J., Shang C., Nuernberg S.T. et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature. 2014;514(7520):102-106. https://doi.org/10.1038/nature13596.
  • Wang Z., Zhang X.J., Ji Y.X., Zhang P., Deng K.Q., Gong J. et al. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat. Med. 2016;22(10):1131-1139. https://doi.org/10.1038/nm.4179.
  • Wang K., Long B., Liu F., Wang J.X., Liu C.Y., Zhao B. et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur. Heart J. 2016;37(33):2602-2611. https://doi.org/10.1093/eurheartj/ehv713.
  • Li H., Xu J.D., Fang X.H., Zhu J.N., Yang J., Pan R. et al. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc. Res. 2020;116(7):1323-1334. https://doi.org/10.1093/cvr/cvz215.
  • Zhang H., Zhang N., Jiang W., Lun X. Clinical significance of the long non-coding RNA NEAT1/miR-129-5p axis in the diagnosis and prognosis for patients with chronic heart failure. Exp. Ther. Med. 2021;21(5):512. https://doi.org/10.3892/etm.2021.9943.
  • Xie M.B., Sui X.Q., Pei D., Yao Q., Huang Q. Study on the expression and mechanism of plasma microRNA-21 in patients with ischemic cardiomyopathy. Eur. Rev. Med. Pharmacol. Sci. 2017;21(20):4649-4653.
  • Obradovic D., Rommel K.P., Blazek S., Klingel K., Gutberlet M., Lücke C. et al. The potential role of plasma miR-155 and miR-206 as circulatory biomarkers in inflammatory cardiomyopathy. ESC Heart Fail. 2021;8(3):1850-1860. https://doi.org/10.1002/ehf2.13304.
  • Fan K.L., Zhang H.F., Shen J., Zhang Q., Li X.L. Circulating microRNAs levels in Chinese heart failure patients caused by dilated cardiomyopathy. Indian Heart J. 2013;65(1):12-16. https://doi.org/10.1016/j.ihj.2012.12.022.
  • Yan H., Ma F., Zhang Y., Wang C., Qiu D., Zhou K. et al. miRNAs as biomarkers for diagnosis of heart failure: A systematic review and meta-analysis. Medicine (Baltimore). 2017;96(22):e6825. https://doi.org/10.1097/MD.0000000000006825.
  • Rincón L.M., Rodríguez-Serrano M., Conde E., Lanza V.F., Sanmartín M., González-Portilla P. et al. Serum microRNAs are key predictors of longterm heart failure and cardiovascular death after myocardial infarction. ESC Heart Fail. 2022;9(5):3367-3379. https://doi.org/10.1002/ehf2.13919.
  • Mone P., Lombardi A., Kansakar U., Varzideh F., Jankauskas S.S., Pansini A. et al. Empagliflozin improves the microRNA signature of endothelial dysfunction in patients with HFpEF and diabetes. J. Pharmacol. Exp. Ther. 2022;JPET-AR-2022-001251. https://doi.org/10.1124/jpet.121.001251.
  • Sardu C., Massetti M., Scisciola L., Trotta M.C., Santamaria M., Volpicelli M. et al. Angiotensin receptor/Neprilysin inhibitor effects in CRTd non-responders: From epigenetic to clinical beside. Pharmacol. Res. 2022;182:106303. https://doi.org/10.1016/j.phrs.2022.106303.
  • Qian L., Zhao Q., Yu P., Lü J., Guo Y., Gong X. et al. Diagnostic potential of a circulating miRNA model associated with therapeutic effect in heart failure. J. Transl. Med. 2022;20(1):267. https://doi.org/10.1186/s12967-022-03465-w.
  • Sun D., Li C., Liu J., Wang Z., Liu Y., Luo C. et al. Expression profile of microRNAs in hypertrophic cardiomyopathy and effects of microRNA-20 in inducing cardiomyocyte hypertrophy through regulating gene MFN2. DNA Cell Biol. 2019;38(8):796-807. https://doi.org/10.1089/dna.2019.4731.
  • Wang Y., Wang H., Zhang L., Zhang J., Liu N., Zhao P. A novel identified circular RNA, circSnap47, promotes heart failure progression via regulation of miR-223-3p/MAPK axis. Mol. Cell. Biochem. 2022;10.1007/ s11010-022-04523-z. https://doi.org/10.1007/s11010-022-04523-z.
  • Täubel J., Hauke W., Rump S., Viereck J., Batkai S., Poetzsch J. et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J. 2021;42(2):178-188. https://doi.org/10.1093/eurheartj/ehaa898.
  • Han Y., Nie J., Wang D.W., Ni L. Mechanism of histone deacetylases in cardiac hypertrophy and its therapeutic inhibitors. Front. Cardiovasc. Med. 2022;9:931475. https://doi.org/10.3389/fcvm.2022.931475.
  • Ngo V., Fleischmann B.K., Jung M., Hein L., Lother A. Histone deacetylase 6 inhibitor JS28 prevents pathological gene expression in cardiac myocytes. J. Am. Heart Assoc. 2022;11(12):e025857. https://doi.org/10.1161/JAHA.122.025857.
  • Bernardo B.C., Ooi J.Y., Matsumoto A., Tham Y.K., Singla S., Kiriazis H. et al. Sex differences in response to miRNA-34a therapy in mouse models of cardiac disease: identification of sex-, diseaseand treatment-regulated miRNAs. J. Physiol. 2016;594(20):5959-5974. https://doi.org/10.1113/JP272512.
Еще
Статья обзорная