Blum - Hanson ergodic theorem in a banach lattices of sequences
Автор: Azizov А.N., Chilin V.I.
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 3 т.19, 2017 года.
Бесплатный доступ
It is well known that a linear contraction T on a Hilbert space has the so called Blum-Hanson property, i.e., that the weak convergence of the powers Tn is equivalent to the strong convergence of Cesaro averages 1m+1∑mn=0Tkn for any strictly increasing sequence {kn}. A similar property is true for linear contractions on lp-spaces (1≤p1, or for positive linear contractions on Lp-spaces. We prove that this property holds for any linear contractions on a separable p-convex Banach lattices of sequences.
P-выпуклость
Короткий адрес: https://sciup.org/14318601
IDR: 14318601 | DOI: 10.23671/VNC.2017.3.7107