Эрозионный износ термореактивных полимеров и композитов твердыми частицами при комнатной и повышенных температурах: экспериментальное исследование

Автор: Мишнев Максим Владимирович, Королев Александр Сергеевич

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 5 (98), 2021 года.

Бесплатный доступ

Работа посвящена экспериментальным исследованиям стойкости к газоабразии полимерных термореактивных вяжущих и композитов на их основе, предназначенных для использования в конструкциях газоотводов промышленных предприятий (преимущественно металлургических). Разработано и изготовлено новое экспериментальное оборудование для газоабразивных испытаний на изнашивание. Данное оборудование позволяет проводить ускоренные испытания при температуре до 250°С при углах атаки 90° и 45°. Проведенные на данном оборудовании испытания позволили получить зависимость интенсивности изнашивания рассматриваемых вяжущих в газоабразивном потоке от изменения температуры и изменяющихся вследствие этого механических характеристик. Оценено влияние длительной выдержки при температуре, превышающей температуру стеклования, на их стойкость к газоабразивному изнашиванию. Оценена износостойкость в газоабразивном течении стеклопластиков на основе эпоксидных и эпоксифенольных связующих и различных видов стеклотканей.

Еще

Эрозия твердыми частицами, композиционные материалы, термореактивные смолы, стекловолокно, износостойкость, газоходы, абразивный поток

Короткий адрес: https://sciup.org/143178330

IDR: 143178330   |   DOI: 10.4123/CUBS.98.4

Список литературы Эрозионный износ термореактивных полимеров и композитов твердыми частицами при комнатной и повышенных температурах: экспериментальное исследование

  • Seleznev L. I. et al. Vliyanie zashchitnogo pokrytiya Cr-CrC na harakteristiki iznosa gazoabrazivnym potokom ploskoj misheni na stali 20H13 pri ugle ataki 30o // Neftyanoe hozyajstvo. 2015. № 8. P. 110–113.
  • Zhang Z. et al. High temperature shape memory polymer with high wear resistance // Smart Materials and Structures. 2019. Vol. 28, № 10.
  • Momber A.W., Irmer M., Marquardt T. Effects of polymer hardness on the abrasive wear resistance of thick organic offshore coatings // Progress in Organic Coatings. 2020. Vol. 146.
  • Olea-Mejia O., Brostow W., Buchman E. Wear resistance and wear mechanisms in polymer + metal composites // Journal of Nanoscience and Nanotechnology. 2010. Vol. 10, № 12.
  • Wetzel B. et al. Impact and wear resistance of polymer nanocomposites at low filler content // Polymer Engineering and Science. 2002. Vol. 42, № 9.
  • Sedakova E.B., Kozyrev Y.P. Influence of Particle Size on the Wear Resistance and Strength of Polymer Composites // Russian Engineering Research. 2018. Vol. 38, № 7.
  • Kleis I., Kulu P. Solid particle erosion: Occurrence, prediction and control // Solid Particle Erosion: Occurrence, Prediction and Control. 2008.
  • Harsha A.P., Bhaskar D.K. Solid particle erosion behaviour of ferrous and non-ferrous materials and correlation of erosion data with erosion models // Materials and Design. 2008. Vol. 29, № 9.
  • Chen D., Sarumi M., Al-Hassani S.T.S. Computational mean particle erosion model // Wear. 1998. Vol. 214, № 1.
  • Finnie I. Erosion of surfaces by solid particles // Wear. 1960. Vol. 3, № 2.
  • Zahavi J., Schmitt G.F. Solid particle erosion of reinforced composite materials // Wear. 1981. Vol. 71, № 2.
  • Li Y. et al. Solid particle erosion in the reheat stage of the steam turbine // Jixie Gongcheng Xuebao/Journal of Mechanical Engineering. 2016. Vol. 52, № 16.
  • Arjula S., Harsha A.P., Ghosh M.K. Solid-particle erosion behavior of high-performance thermoplastic polymers // Journal of Materials Science. 2008. Vol. 43, № 6.
  • Grant G., Tabakoff W. Erosion prediction in turbomachinery resulting from environmental solid particles // Journal of Aircraft. 1975. Vol. 12, № 5.
  • Choudhary M. et al. Optimization of solid particle erosion behaviour of waste marble dust filled glass fiber polymer composite using Taguchi approach // Materials Today: Proceedings. 2020. Vol. 44.
  • Hussain A., Singh G., Gill H.S. Solid particle erosion behaviour of industrial epoxy resin composite against different parameters // Materials Today: Proceedings. 2021.
  • Repetto C. et al. The application of a fiberglass liner in well tubing as cost effective material option in high velocity production wells // Society of Petroleum Engineers - Abu Dhabi International Petroleum Exhibition and Conference 2019, ADIP 2019. 2019.
  • Ismail M. et al. Parametric appraisal of erosion behaviour of organo-modified montmorillonite-filled epoxy hybrid composites by Taguchi approach // Journal of Reinforced Plastics and Composites. 2013. Vol. 32, № 21.
  • Ibrahim A.T., Ballout Y., Talia J.E. An attempt to unify the models used for ductile and brittle solid particle erosion // Journal of Materials Engineering. 1991. Vol. 13, № 1.
  • Padhi P.K., Satapathy A. Prediction and simulation of erosion wear behavior of glass- epoxy composites filled with blast furnace slag // Advanced Materials Research. 2012. Vol. 585.
  • Miyazaki N. Solid particle erosion behavior of FRPs with prior impact damage // Journal of Composite Materials. 2007. Vol. 41, № 6.
  • Bagci M., Imrek H. Erosion wear performance of borax filled novel hybrid composites by using the Taguchi experimental design // Industrial Lubrication and Tribology. 2016. Vol. 68, № 1.
  • Talia M., Lankarani H., Talia J.E. New experimental technique for the study and analysis of solid particle erosion mechanisms // Wear. 1999. Vol. 225–229, № PART II.
  • Bagci M. Determination of solid particle erosion with Taguchi optimization approach of hybrid composite systems // Tribology International. 2016. Vol. 94.
  • Barkoula N.M., Gremmels J., Karger-Kocsis J. Dependence of solid particle erosion on the crosslink density in an epoxy resin modified by hygrothermally decomposed polyurethane // Wear. 2001. Vol. 247, № 1.
  • Srivastava V.K. Effects of wheat starch on erosive wear of E-glass fibre reinforced epoxy resin composite materials // Materials Science and Engineering A. 2006. Vol. 435–436.
  • Miyazaki N., Hamao T. Effect of interfacial strength on erosion behavior of FRPs // Journal of Composite Materials. 1996. Vol. 30, № 1.
  • Bagci M., Imrek H. Solid particle erosion behaviour of glass fibre reinforced boric acid filled epoxy resin composites // Tribology International. 2011. Vol. 44, № 12.
  • Bagci M. Influence of fiber orientation on solid particle erosion of uni/multidirectional carbon fiber/glass fiber reinforced epoxy composites // Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 2017. Vol. 231, № 5.
  • Jiang B. Study of solid particle erosion in glass fiber/epoxy composite materials // Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica. 1993. Vol. 10, № 4.
  • Atia A.M., El-Minia A.W.Y. Erosion of glass fibre reinforced epoxy composites // KGK Kautschuk Gummi Kunststoffe. 2018. Vol. 71, № 3.
  • Ballout Y.A., Hovis S.K., Talia J.E. Erosion in glass-fiber reinforced epoxy composite // Scripta Metallurgica et Materiala. 1990. Vol. 24, № 1.
  • Tewari U.S. et al. Solid particle erosion of carbon fibre- and glass fibre-epoxy composites // Composites Science and Technology. 2003. Vol. 63, № 3–4.
  • Srivastava V.K., Pawar A.G. Solid particle erosion of glass fibre reinforced flyash filled epoxy resin composites // Composites Science and Technology. 2006. Vol. 66, № 15.
  • Mishra P., Acharya S.K. Solid particle erosion of Bagasse fiber reinforced epoxy composite // International Journal of Physical Sciences. 2010. Vol. 5, № 2.
  • Agarwal P. et al. Numerical simulation of solid particle erosion for glass fiber reinforced epoxy composites // Materials Today: Proceedings. 2020. Vol. 38.
  • Patnaik A. et al. Solid particle erosion wear characteristics of fiber and particulate filled polymer composites: A review // Wear. 2010. Vol. 268, № 1. P. 249–263.
  • Pawar M.J. et al. Experimental and numerical investigation on erosive wear performance of hybrid polymer composites // Materials Today: Proceedings. Elsevier Ltd, 2020. Vol. 44. P. 4775–4783.
  • Shakuntala O., Raghavendra G., Samir Kumar A. Effect of filler loading on mechanical and tribological properties of wood apple shell reinforced epoxy composite // Advances in Materials Science and Engineering. 2014. Vol. 2014.
  • Bagci M. et al. The effect of nanoclay particles on the incubation period in solid particle erosion of glass fibre/epoxy nanocomposites // Wear. 2020. Vol. 444–445.
  • Wang C. et al. Anti-corrosion and wear resistance properties of polymer composite coatings: Effect of oily functional fillers // Journal of the Taiwan Institute of Chemical Engineers. 2018. Vol. 85.
  • Liu B., Bao L., Xu A. Effect of fabric orientation and impact angle on the erosion behavior of highperformance thermoplastic composites reinforced with ductile fabric // Wear. 2016. Vol. 352–353.
  • Thabisimov A.B. et al. Eksperimental'nyj stend dlya izucheniya abrazivnoj stojkosti konstrukcionnyh materialov i zashchitnyh pokrytij // Estestvennye i tekhnicheskie nauki. 2013. Vol. 67, № 5. P. 234–238.
  • Thabisimov Aleksandr Borisovich. Povyshenie abrazivnoj stojkosti lopatochnogo apparata pervyh stupenej cilindrov vysokogo i srednego davleniya moshchnyh parovyh turbin. Moskva, 2016.
  • Das S.K. et al. Analytical model for erosion behaviour of impacted fly-ash particles on coal-fired boiler components // Sadhana - Academy Proceedings in Engineering Sciences. 2006. Vol. 31, № 5.
  • Chen Q., Li D.Y. Computer simulation of solid-particle erosion of composite materials // Wear. 2003. Vol. 255, № 1–6.
  • Campos-Amezcua A. et al. Numerical study of erosion due to solid particles in steam turbine blades // Numerical Heat Transfer; Part A: Applications. 2008. Vol. 53, № 6.
  • Ashrafizadeh H., Ashrafizadeh F. A numerical 3D simulation for prediction of wear caused by solid particle impact // Wear. 2012. Vol. 276–277.
  • Korolev A. et al. Prolonged Thermal Relaxation of the Thermosetting Polymers // Polymers. 2021. Vol. 13, № 23. P. 4104.
  • Korolev A. et al. Polymers under load and heating deformability: Modelling and predicting // Polymers. 2021. Vol. 13, № 3.
  • National standard GOST 19907–2015 Dielectric fabrics made of glass. Twister complex threads. Specifications. // https://docs.cntd.ru/document/1200122459
  • National standard GOST 15081–78 Lak KO-08 Silico-organic thermostable varnish KO-08.
Еще
Статья научная