К вопросу диверсификации энергоносителей на транспорте

Автор: Беляев С.В.

Журнал: Resources and Technology @rt-petrsu

Статья в выпуске: 7, 2008 года.

Бесплатный доступ

Статья посвящена проблемам поиска новых видов топлив для транспорта, отвечающих самым строгим экологическим требованиям. Среди альтернативных топлив особое внимание в последнее время уделяется биотопливам и диметиловому эфиру. Дается анализ свойств этих топлив и их применение на транспорте.

Диверсификация топлив, биоэтанол, биодизедь, диметиловый эфир

Короткий адрес: https://sciup.org/147112200

IDR: 147112200

Текст научной статьи К вопросу диверсификации энергоносителей на транспорте

С точки зрения защиты окружающей среды развитие автомобилей и их приводов определяется в дальнейшем постоянно ужесточаемыми требованиями к отработавшим газам. Кроме этого, мероприятия по сокращению расхода топлива и эмиссии СО2 все больше влияют на концепцию оптимизации автомобилей и привода.

Поэтому долгосрочное гарантированное снабжение энергоносителями для транспорта предполагает наряду с бережным обращением с топливом среднюю и долгосрочную диверсификацию источников энергии для производства топлива, в особенности с включением альтернативных и возобновленных

Поскольку значительная часть мирового энергопотребления приходится на транспорт, прежде всего автомобильный, изготовители транспортных средств поставлены перед необходимостью развивать и внедрять в эксплуатацию новые, все более энергетически эффективные и экологически чистые способы их приведения в движение – например, с использованием нетрадиционных видов топлива, к которым относятся: спиртовые топлива (этанол и метанол), биодизель, жидкости Фишера – Тропша, водородные топлива и т. д.

По мере истощения запасов ископаемых топлив, роста их стоимости и увеличения количества энергопотребителей все острее встает вопрос о поиске альтернативных источников энергии. В тех странах, где запасы нефти и природного газа крайне ограничены, альтернативные виды топлива применяются довольно давно. А в странах, где постоянно ужесточаются требования к охране окружающей среды (Европа, Япония, США), активно проводится национальная политика по применению более экологически чистых альтернативных топлив для транспорта. Одним из возможных вариантов является использование синтетических жидких топлив. Основой для них является синтез-газ, представляющий собой смесь угарного газа и водорода в различных пропорциях с использованием металлических и синтетических катализаторов. Наиболее разработанной является технология Фишера – Тропша, позволяющая получать из синтез-газа метанол, этанол и другие жидкие горючие органические соединения. Также существует способ получения метанола и этанола на основе специальных бактерий и дрожжевых культур, способных перерабатывать отходы сельского хозяйства и сточные воды городской канализации.

Многие из процессов преобразования синтез-газа были разработаны в Германии в течение Первой и Второй мировых войн, когда природные ресурсы были ограничены и появилась потребность в альтернативных путях для производства водорода, синтеза аммиака и транспортных топлив. С развитием нефтяной промышленности в 1940-х гг. и после непривлекательная экономика многих из путей преобразования синтез-газа стала проблемой и была заменена процессами на основе нефти. Главным требованием к автомобилям является соблюдение международных норм по выбросам вредных веществ с отработавшими газами.

С 2005 г. в России проводится экологическая классификация автомобилей на соответствие европейским нормам (Евро-2, Евро-3, Евро-4, Евро-5). Обеспечение этих показателей возможно лишь при использовании соответствующих моторных топлив. Каждому классу должны соответствовать моторные топлива с экологическими показателями качества, которые способствуют обеспечению автомобилями норм по выбросам вредных веществ в течение 100 тыс. км пробега и более.

Применение нового поколения экологически чистых топлив может существенно способствовать решению самых актуальных проблем в недалеком будущем. Синтетические топлива играют в этом плане главную роль, так как они предоставляют возможность исполь- зовать для производства топлива большое количество самых различных первичных источников энергии. Поиск новых путей повышения ценности природного газа ускорил развитие так называемых технологий «газ – в жидкость», позволяющих производить синтетические жидкие топлива из природного газа, такие как средние дистилляты, «метанол» и «диметиловый эфир» (ДМЭ). Диметиловый эфир – экологически чистое топливо без содержания серы, содержание оксидов азота в выхлопных газах на 90% меньше, чем у дизельного топлива. Цетановое число диметилового дизеля более пятидесяти пяти, притом что у классического нефтяного – тридцать восемь – пятьдесят три. Применение диметилового эфира не требует специальных фильтров, но необходима переделка систем питания (установка газобаллонного оборудования, корректировка смесеобразования) и зажигания двигателя. Без переделки возможно применение на автомобилях с LPG-двигателями при 30% содержании в топливе. Теплота сгорания ДМЭ около 30 МДж/кг, у классических нефтяных топлив – около 42 МДж/кг. Одна из особенностей применения ДМЭ – его более высокая окисляющая способность (благодаря содержанию кислорода), чем у классического топлива.

  •    Бесцветный газ с характерным запахом, химически инертный.

  •    Температура плавления – (-138,5) °C

  • •    Температура кипения – (-24,9) °C

  •     Температура вспышки – (-41) °C

  •    Плотность при нормальных условиях – 2,1098 кг/м³

  •    Плотность в жидкой фазе – 0,668 г/см³

  •     Критическая температура – +127,0 °C

  •     Критическое давление – 53 атм.

  • •    Критическая плотность – 0,272 г/см³

  •    Растворимость в воде – 328 г/100 мл при 20 °C

  •    Растворим в метиловом и этиловом спирте , толуоле

История ДМЭ

Александр Уильямсон (1824-1904), профессор химии, университетский колледж Лондона. Уильямсону приписывают открытие структуры эфиров, приблизительно в 1850 г.

ДМЭ известен достаточно давно, но раньше его применяли лишь в парфюмерии для создания давления в баллонах с лаками и дезодорантами. Там он заменил вредные газы – фреоны, бутан и пропан. Использовался диметиловый эфир так же, как хладагент и растворитель. В последнее десятилетие XX века австрийские, датские и американские исследователи предложили использовать ДМЭ в качестве альтернативы дизельному топливу. Сегодня общественный транспорт Швеции и Дании частично переведен на ДМЭ. Аналогичные мероприятия в сфере грузового автотранспорта проводит Япония. Диметиловый эфир производится из природного газа, угля или биотоплива. Это производная метанола, которая получается в процессе преобразования газа в жидкое состояние. Сегодня в мире потребление диметилового эфира составляет около 150 тыс. т в год. Существует два типа ДМЭ: высший сорт – содержание диметилового эфира не менее 99,5%, используется в парфюмерии, низший сорт – в качестве моторного топлива, содержание ДМЭ на уровне 95%.

Преимущества применения диметилэфира (ДМЭ) на автомобильном транспорте в нашей стране раньше всех осознали в Москве, где экологическое положение особенно тревожно. Так, в 1986 г. загрязнение воздушного бассейна города вредными выбросами двигателей внутреннего сгорания (ДВС) составило 870 тыс. т, а в 1995-м – 1,7 млн. т. Отрицательная динамика со временем принимает угрожающие масштабы, поэтому правительство Москвы, чтобы активизировать процесс замещения традиционных видов моторного топлива альтернативными, экологически более чистыми, утвердило в марте 2002 г. городскую целевую Программу использования альтернативных видов моторного топлива на автомобильном транспорте города на 2002– 2004 гг. [1]

Исследования показывают, что применение диметилового эфира в качестве моторного топлива для дизелей становится поводом для весьма оптимистичных прогнозов. Действительно, у ДМЭ есть ряд преимуществ по сравнению с дизельным топливом и другими альтернативными видами топлива. Он является газообразным. В нормальных условиях это газ, и его молекулы не имеют химических связей углерод–углерод, что исключает образование в пламени радикалов С2, способствующих сажеобразованию при сгорании. При этом снимется главная проблема дизеля – карбонизация значительной части топлива с последующим замедлением скорости выгорания дисперсного углерода. К благоприятным физико-химическим параметрам ДМЭ относят повышенную испаряемость, что снижает требования к дисперсности распыления, позволяет понизить давление впрыска и обеспечивает хорошее смесеобразование. Отличная самовоспламеняемость в дизельном двигателе (у ДМЭ цетановое число ЦЧ = 55...60 по сравнению с ЦЧ = 45...50 для дизельного топлива) улучшает пусковые качества и способствует «мягкому» сгоранию. Высокое содержание в ДМЭ связанного кислорода (35%) повышает равномерность распределения в камере сгорания, препятствуя образованию NOх, наиболее агрессивного компонента дизельного топлива. Использование диметилэфира – это практически полное отсутствие дымности отработавших газов и значительное снижение шума от двигателя.

Немаловажно и то, что по физическим свойствам ДМЭ подобен пропан-бутановым газам, нашедшим широкое применение в качестве альтернативного топлива для двигателей внутреннего сгорания. В частности, ДМЭ имеет близкие значения параметров насыщения: температура перехода в жидкую фазу минус 25°C (у пропана – минус 50°C), давление насыщенных паров 5,1 кгс/см2 (у пропана – 8 кгс/см2) при температуре 20°С. Как пропан и бутан, ДМЭ следует хранить в сжиженном состоянии в газовом баллоне под давлением. Технология работы со сжиженными газами достаточно хорошо отработана, поэтому упомянутое свойство диметилового эфира не является препятствием для его практического применения.

Результаты испытаний дизелей, работающих на диметиловом эфире, показали реальную возможность значительно снизить уровень вредных выбросов отработавших газов. Так, отмечено снижение окислов азота NOх в три – четыре раза при практически бездымной работе двигателя на всех режимах. Кроме того, при работе на ДМЭ выявлено сохранение, а на некоторых режимах и улучшение до 5% экономичности дизеля, повышение его эффективного к. п. д. по сравнению с работой на дизельном топливе.

Основным недостатком ДМЭ является малая кинематическая вязкость (на порядок меньше, чем дизельного топлива), в результате чего затрудняется герметизация подвижных узлов уплотнения топливной аппаратуры, а также повышается склонность к задирам прецизионных трущихся пар. По сравнению со сжиженным природным газом теплотворная способность на тонну диметилэфира на 45% ниже теплотворности на тонну сжиженного природного газа. Для производства диметилэфира требуется не только более высокий уровень предварительных капиталовложений, но и больший объем сырьевого газа для производства продукта с эквивалентной теплотворной способностью. Для снижения выбросов СО и СН необходимо предусмотреть дополнительные меры конструкционного характера.

Адаптация обычных дизелей для работы на диметиловом эфире заключается в модернизации существующей топливоподающей аппаратуры. Поскольку плотность ДМЭ на 20%, а удельная массовая теплотворность на 32% ниже, чем дизельного топлива, для сохранения энергоемкости объемная подача ДМЭ в цилиндры двигателя должна быть значительно большей (объемная теплотворная способность ДМЭ составляет 18,2 МДж/л). Для устранения склонности к задирам прецизионных трущихся пар в конструкции топливоподающей аппаратуры принимаются специальные меры, например, подвод к плунжерным парам масла под давлением с целью их уплотнения, а также подмешивание к ДМЭ специальной противозадирной присадки. По зарубежным данным, этот компонент способствует увеличению кинематической вязкости ДМЭ до уровня дизельного топлива.

ДМЭ легко превращается в бензин, характеризующийся повышенным экологическим качеством (преобладание разветвленных углеводородов) и минимальным содержанием нежелательных примесей (сера отсутствует, содержание бензола на уровне 0,1% при норме 1%, содержание непредельных углеводородов ~1%, что обеспечивает высокую стабильность бензина).

Наиболее серьезная проблема, выявленная в ходе эксплуатационных испытаний, была связана с возникновением на ряде рабочих режимов т. н. «провалов» в работе двигателя после его прогрева, наибо- лее часто проявляющихся при повышенных температурах окружающей среды. В результате изучения этого дефекта было установлено, что «провалы» вызваны появлением паровых пробок в нагнетательных топливопроводах, когда остаточное давление в топливопроводе опускается ниже давления насыщенных паров ДМЭ.

Получение ДМЭ

Переработка природного газа и других источников углерода (уголь, древесные остатки и т. п.) в моторные топлива в XXI веке становится одной из важнейших проблем газохимии. Синтез диметилового эфира (ДМЭ) и бензина через диметиловый эфир – одно из новых направлений в этой области [2].

На рисунке 1 показана схема получения синтетических топлив. Свойства ДМЭ и наличие в его составе атома кислорода обеспечивают бездымное горение топлива, надежный холодный пуск двигателя, снижение уровня шума. В таблице 1 представлены свойства дизельного топлива и альтернативных топлив.

Согласно оценкам и зарубежных, и отечественных специалистов, адаптация автотранспорта к новому топливу не встречает принципиальных затруднений. Серьезные затруднения могут возникнуть лишь в связи с необходимостью создания соответствующей инфраструктуры, роль которой имеющаяся «пропан-бутановая инфраструктура» может выполнить лишь частично, так что потребуются значительные инвестиции.

Расчеты японских исследователей показали, что при крупных масштабах производства применение ДМЭ в качестве топлива для газотурбинных установок более экономично, чем сжиженного газа. Фактически это обусловлено тем, что хранение и транспорт ДМЭ обходятся значительно дешевле, чем сжиженного или сжатого газа. По физическим свойствам ДМЭ близок к пропан-бутановым смесям, так что могут быть использованы уже отработанные условия их хранения и транспорта (табл. 2).

Особое внимание в последние годы во многих странах, в том числе и России, уделяется производству и применению биотоплив, которые в XXI веке могут оказать существенное влияние на развитие энергетики, систем устойчивого энергообеспечения разных регионов и внести свой вклад в диверсификацию используемых видов топлива.

В будущем ожидается существенное увеличение доли выработки электроэнергии и тепла на нетрадиционных и возобновляемых энергоресурсах. Экономический и неиспользуемый потенциал этих ресурсов в России велик и составляет около 270 млн. т. у. т. в год, т. е. более 20% общего энергопотребления [4].

Биотоплива для транспорта, включая этанол, биодизель и некоторые другие жидкие и газообразные топлива, имеют потенциал для замещения существенного количества нефти во многих регионах мира [5].

Рис. 1. Схема получения синтетических топлив

Некоторые свойства дизельного и альтернативных топлив

Таблица 1

Свойство

Диметиловый эфир

Дизельное топливо

Метанол

Этанол

Метан

Теплотворная    способность,

МДж/кг

28,8

42,5

19,5

25,0

50,0

Плотность, г/см³

0,66

0,84

0,79

0,81

Цетановое число

55-60

40-55

5

8

Температура самовоспламенения, °C

235

250

450

420

650

Соотношение воздух/топливо

9,0

14,6

6,5

9,0

17,2

Температура кипения, °C

-25

180-370

65

78

-162

Теплота испарения при 20°C, кДж/кг

410

250

1110

904

Пределы воспламенения (в воздухе), %

3,4-18

0,6-6,5

5,5-26

3,5-15

5-15

Некоторые свойства ДМЭ, пропана и бутана

Свойства

ДМЭ

Пропан

Бутан

1

2

3

4

1

2

3

4

Температура кипения, °C

-24,9

-42,1

-0,5

Давление насыщенного пара (при 20°C), бар

5,1

8,4

2,1

Вязкость жидкости, сП

0,15

0,10

0,18

Плотность жидкости   (при

20°C), кг/м³

668

501

610

Относительная плотность (по воздуху)

1,59

1,52

2,01

Растворимость в воде г/л

70

0,12

0,39

Теплотворная    способность,

МДж/кг

28,43

46,36

45,74

Таблица 2

Анализ же современного состояния применения биотоплив на транспорте по сравнению с нефтяными топливами показывает, что доля их применения пока остается относительно низкой.

Лидерами по производству этанола в мире являются США и Бразилия. Однако даже в США этанол используется менее чем на 2 % транспорта (в Бразилии до 30 %) [3]. Но следует отметить, что практически все промышленно развитые страны начинают проявлять повышенный интерес к биотопливам. Можно ожидать, что в недалекой перспективе применение биотоплив значительно будет возрастать во многих регионах мира, в том числе и в России [6]. Очевидно, что среди значимых преимуществ биотоплив – повышение энергетической безопасности, уменьшение выбросов парниковых газов и токсичных веществ, улучшение эксплуатационных характеристик автомобилей, развитие экономики, а в некоторых случаях и защита экосистемы и т.д.

Эти положительные свойства биотоплив действительно непросто оценить в единицах стоимости. В связи с этим можно предположить, что рыночные цены на биотоплива не совсем адекватно их отражают. Хорошо известно, что стоимость производства жидких биотоплив остается высокой. Однако достоинства биотоплив могут в недалеком будущем проявиться в большей степени в связи с ужесточением экологических требований как к самим топливам, так и к транспортным средствам.

Правда, уже сегодня в некоторых странах, таких как Бразилия, цена на биотопливо (этанол) значительно ниже, чем в Европе, США, и приближается к стоимости нефтяных топлив. Следует ожидать, что в ближайшее десятилетие стоимость производства и в других странах будет постепенно снижаться.

Одной из причин этого, вероятно, будет внедрение в будущем передовых технологий при производстве биотоплив с очень низкими выбросами парниковых газов.

Новые технологии позволят в большей степени использовать запасы лигниноцеллюлозы, получаемой как из отходов производства, так и из различных лесных и аграрных ресурсов, предназначенных для этой цели.

В настоящее время большинство существующих технологий нацелены на получение сахара, крахмала или растительных масел из нескольких типов культур и при этом используют энергию ископаемых топлив для производства биотоплива. И как результат – выбросы парниковых газов в процессе получения биотоплив меньше от 20 до 50% по сравнению с нефтяными топливами [6].

Передовые технологии, над которыми уже сегодня работают во многих научно-исследовательских центрах США, Европы, Японии, могут радикально улучшить экологические характеристики и открыть путь к утилизации огромных запасов лесных и других ресурсов для получения целлюлозного этанола.

Вероятно, Канада может быть одной из первых стран, где в недалеком будущем будут внедрены новые технологии по конверсии целлюлозы в этанол в промышленных масштабах [7].

Во многих странах предпринимаемые инициативы в области применения биотоплив связаны с признанием нерыночных преимуществ биотоплив, и довольно часто это приводит к росту применения биотоплив на транспорте.

Биотоплива уже сегодня могут заменить нефтяные топлива при их применении в современных автомобилях. Этанол и его смеси с бензином легко могут использоваться на обычных автомобилях. С повышением содержания этанола (более 10 %) требуется некоторая модификация систем питания.

Автомобили, предназначенные для использования этанола и его смесей, уже созданы, активно эксплуатируются в США (FFV - flex-fuel vehicle.)

Биодизель может смешиваться с нефтяным дизельным топливом в любой пропорции для применения в обычных двигателях (небольшое количество этанола также можно добавлять в дизельное топливо при некоторых условиях).

Но следует отметить, что энергосодержание биотоплив ниже, чем нефтяных. В таблице 3 представлены некоторые характеристики биотоплив [8].

Некоторое количество нефти также используется при производстве биотоплив. Анализ затрат, проведенный в ряде лабораторий [6], показывает, что обычно требуется от 0.15 до 0.20 литров нефтяного топлива для производства 1 литра биотоплива. Использование культур с низким применением удобрений (таких как некоторые травы и деревья) может улучшить это соотношение.

Характеристики альтернативных топлив

Таблица 3

Показатель

Биодизель

Сжатый природный газ

Этанол (Е85)

Сжиженый природный газ

Сжиженый нефтяной газ

Метанол (М-85)

Химическая формула

Метиловые эфиры С16-С18

CH 4

CH 3 CH 2 O H

CH 4

C 3 H 8

CH 3 OH

Исходное сырье

Раст. масла, животные жиры; переработанные отходы пищевой пром-ти

Метан

85% денат. этанол и 15% бензин

Охлажденный метан

Пропан

85% метанол и 15% бензин

Основной источник топлива

Рапс, соевое масло

Подземные запасы

Зерно, кукуруза, отходы с/х

Подземные запасы

Продукты переработки нефти и газа

Природный   газ,

уголь, отходы древесины

Содержание энергии в галлоне

117.000-120.000

BTU

33.000      -

38000 BTU

P=3000 psi

80.460 BTU

73.500 BTU

84.000 BTU

63.350 BTU

Список литературы К вопросу диверсификации энергоносителей на транспорте

  • Альтернативные источники энергии для транспорта и энергетики больших городов: Тез. докл. межд. конференции. М.: Изд-во Прима-Пресс-М. 2000. 100 с.
  • Розовский А. Я. Диметиловый эфир и бензин из природного газа/А. Я. Розовский//Рос. хим. ж. 2003. С. 53-61.
  • Biothanol and the Ethanol Industry today. US. DOE. Biomass Program: http://www. DOE. Biomass Publications.htm.
  • Воропай Н. И. Глобальные тенденции в энергетике на рубеже столетий/Н. И. Воропай//Энергия: экономика, техника, экология. 2000. № 12. С. 31-38.
  • О проблемах производства биотоплива в мире//БИКИ № 8118872, 21.07.2005. С. 12‑14.
  • Biofuels for transport: http://www.IEA.org/books.
  • Biofuels for Sustainable Transportation: http://www.IEA.org.
  • Интернет ресурс: http://altfuel.com.
  • Интернет ресурс: http://www Fuel cell today.com.
  • Artur. D. Little. Inc. Fuel choice for Fuel Cell Vehicles. Report, 2001. 84 c.
  • Fuels for advanced CIDI Engines and fuеl cells. Annual Progress Report. DOE. 2000.
Статья научная