К вопросу о патомеханике внутрисуставных импрессионых переломов костей конечностей

Автор: Гилев М.В., Зайцев Д.В., Киселева Д.В., Измоденова М.Ю.

Журнал: Российский журнал биомеханики @journal-biomech

Статья в выпуске: 2 (80) т.22, 2018 года.

Бесплатный доступ

Целью исследования было изучение прочностных свойств трабекулярной кости человека околосуставной локализации при одноосном сжатии. Исследовали образцы трупной кости мужского ( N = 24; 60,0%) и женского ( N = 16; 40,0%) полов, средний возраст - 39,5 ± 5,6 г. Аттестовали проксимальный отдел большеберцовой кости ( N = 40), дистального эпиметафиза лучевой кости ( N = 40) и пяточную кость ( N = 40). Применяли физический, морфометрический, морфологический методы, метод компьютерной томографии, метод сканирующей электронной микроскопии и метод статистического анализа. Образцы деформировались до максимального напряжения ~ 30%. Максимальное напряжение для пяточной кости в 2,06 раза превышало показатель для дистального эпиметафиза лучевой кости ( p = 0,012) и в 2,09 раза для проксимального отдела большеберцовой кости ( p = 0,025). Модуль Юнга пяточной кости в 2,2 раза превышал аналогичный показатель для дистального эпиметафиза лучевой кости ( p = 0,004) и в 2,7 раза для проксимального отдела большеберцовой кости ( p = 0,024). Для образцов дистального эпиметафиза лучевой кости значение физической плотности составило 0,936 ± 0,073; для проксимального отдела большеберцовой кости - 0,912 ± 0,097; для пяточной кости - 1,092 ± 0,092 г/мм3. Для образцов дистального эпиметафиза лучевой кости радиоденситометрическая плотность равна 204,9 ± 7,2 HU ( Hounsfield unit, единицы Хаунсфилда); для проксимального отдела большеберцовой кости - 256,0 ± 7,0; для пяточной кости - 318,0 ± 3,0 HU. Наблюдалось повышение механических свойств с увеличением физической ( r = 0,678 при p = 0,002) и радиоденситометрической ( r = 0,508 при p = 0,012) плотности. Импрессионная деформация, возникающая при внутрисуставных переломах, характеризует трабекулярную костную ткань как упруго-пластичный материал, разрушение которого не происходит даже после достижения деформации 30% и более от высоты изучаемого образца, при этом обратимая деформация находилась в пределах 3%. Модуль Юнга, максимальное напряжение, упругая деформация, радиоденситометрическая и физическая плотность трабекулярной костной ткани околосуставной локализации являются критериями биоэквивалентного выбора остеозамещающего материала для устранения структурного дефекта.

Еще

Импрессионный перелом, трабекулярная кость, механические свойства, модуль юнга, плотность, внутрисуставной перелом

Короткий адрес: https://sciup.org/146282088

IDR: 146282088   |   DOI: 10.15593/RZhBiomeh/2018.2.02

Список литературы К вопросу о патомеханике внутрисуставных импрессионых переломов костей конечностей

  • Гилев М.В. Хирургическое лечение внутрисуставных переломов проксимального отдела большеберцовой кости // Гений ортопедии. - 2014. - № 1. - С. 75-81.
  • Кутепов С.М., Гилев М.В., Антониади Ю.В. Осложнения при хирургическом лечении внутрисуставных переломов проксимального отдела большеберцовой кости // Гений ортопедии. - 2013. - № 3. - С. 9-12.
  • Тихилов Р.М., Фомин Н.Ф., Корышков Н.А., Емельянов В.Г., Привалов А.М. Современные аспекты лечения последствий переломов костей заднего отдела стопы // Травматология и ортопедия России. - 2009. - Т. 52, № 2. - С. 144-149.
  • Федоров В.Г. Какой термин наиболее приемлем для описания эпиметафизарных переломов костей конечностей: «импрессионный перелом» или «компрессионный перелом»? // Гений ортопедии. - 2014. - № 4. - С. 104-107.
  • Allen M.R., McNerny E., Organ J.M., Wallace J.M. True gold or pyrite: a review of reference point indentation for assessing bone mechanical properties in vivo // J. Bone Miner. Res. - 2015. - Vol. 30, № 9. - P. 1539-1550. DOI: 10.1002/jbmr.2603
Статья научная