On the question of the coincidence of Hilbert spaces square-integrable with respect to the measure of functions

Автор: Napalkov V.V., Nuyatov A.A.

Журнал: Труды Московского физико-технического института @trudy-mipt

Рубрика: Математика

Статья в выпуске: 3 (59) т.15, 2023 года.

Бесплатный доступ

The problem of coincidence (equivalence) of two Hilbert spaces with a reproducing core. In some Hilbert space H, two complete systems in H are space generation of H and H it is required to find conditions under which the spaces H and H consist of the same functions, and at the same time the norms of functions in these spaces are equal (eqvivalent), i.e. H and H coincide (equivalent). In addition, in the work it is proved that when the complete the systems are orthosimilar in the space H with different measures, then the spaces H and H do not coincide. The problem of the coincidence (equivalence) of the spaces of restrictions of functions from Hilbert spaces with the reproducing kernel is also considered.

Еще

Orthosimilar decomposition systems, reproducing kernel hilbert space, problem of describing the dual space

Короткий адрес: https://sciup.org/142239458

IDR: 142239458

Статья научная