Как вычислять интересные следствия
Автор: Кулик Б.А.
Журнал: Онтология проектирования @ontology-of-designing
Рубрика: Общие вопросы формализации проектирования: онтологические аспекты
Статья в выпуске: 2 (48) т.13, 2023 года.
Бесплатный доступ
В современном дедуктивном анализе к основным задачам относятся следующие: поиск доказательства заданного утверждения с помощью аксиом и правил вывода; проверка корректности заданного следствия из определённых посылок. О задачах вывода следствий с заранее заданными свойствам (задачи с интересными следствиями) в настоящее время известно немного, и нет чётких ответов на вопросы: какие свойства присущи интересному следствию и как вычислить интересное следствие? Ответы можно получить, если для моделирования рассуждений воспользоваться математическим аппаратом алгебры кортежей на основе свойств декартова произведения множеств. Объектами алгебры кортежей являются произвольные многоместные отношения. Эти отношения можно рассматривать как интерпретации формул математической логики. Они представляют собой матрицеподобные структуры, у которых ячейки содержат не элементы, а подмножества соответствующих атрибутов. Операции (дополнение, обобщённое пересечение и обобщённое объединение) в алгебре кортежей соответствуют логическим связкам математической логики (отрицание, конъюнкция, дизъюнкция), а отношение обобщённое включение - отношению выводимости. Вычисление кванторных операций выполняется с помощью операций с атрибутами (добавление фиктивного атрибута, что соответствует правилу обобщения в исчислении предикатов, и элиминация атрибута). Для двух из четырёх типов структур алгебры кортежей элиминация атрибутов соответствует вычислению проекции отношения. Для вывода интересных следствий в алгебре кортежей используется структура, названная минимальным следствием, которая равна обобщённому пересечению посылок, выраженных структурами алгебры кортежей. Интересные следствия вычисляются как проекции минимального следствия. В результате вычислений и проверок получаются следствия с сокращённым или заданным составом переменных, а также с сокращённым объёмом записи
Интерпретация, алгебра кортежей, декартово произведение множеств, кванторные операции, правило обобщения, минимальное следствие, проекция, элиминация атрибутов
Короткий адрес: https://sciup.org/170199741
IDR: 170199741 | DOI: 10.18287/2223-9537-2023-13-2-160-174
Список литературы Как вычислять интересные следствия
- Шалак В.И. Анализ vs дедукция // Логические исследования. 2018. Т. 24, № 1. С.26-45.
- Вагин В.Н., Головина Е.Ю., Загорянская А.А., Фомина М.В. Достоверный и правдоподобный вывод в интеллектуальных системах. М.: ООО Издательская фирма "Физико-математическая литература". 2008. 712 с.
- Охотников О.А. О поиске натурального классического логического вывода с использованием частичной скулемизации // Интеллектуальные системы. Теория и приложения. 2019. Т. 23. Вып. 4. С.39-90.
- Симонов А.И., Страбыкин Д.А. Вывод следствий с построением схемы вывода из новых фактов при не полностью определённой базе знаний // Современные наукоёмкие технологии. 2018. № 10. С.120-125.
- Bardovskaya A., Chistyakov G., Dolzhenkova M., Strabykin D. The method of deductive inference of consequences with the scheme construction // Advances in Intelligent Systems and Computing. 2019. Vol. 985. P.1-10.
- Васильев С.Н. Интерактивное порождение новых знаний на основе автоматических средств логического вывода // Онтология проектирования. 2023. Т.13, №1(47). С.10-28. DOI: 10.18287/2223-9537-2023-13-1-1028.
- Quine W.V. The problem of simplifying of truth functions // Amer. Math. Monthly. 1952, Vol. 59. P.521-531.
- Михеева Е.А., Еникеева А. Ф. Минимизация булевых функций геометрическим методом // Учёные записки УлГУ. Сер. Математика и информационные технологии. Электрон. журн. 2018. № 1, С.72-82. https ://www. mathnet.ru/rus/ulsu/y2018/i1/p72.
- Кулик Б.А. Логика и математика: просто о сложных методах логического анализа (под общ. ред. А.Я. Фридмана). СПб.: Политехника. 2020. 144 с.
- Mendelson E. Introduction to Mathematical Logic (6th ed.). Boca Raton, London, New York: Taylor & Francis Group, 2015. 499 p.
- Плоткин Б.И. Универсальная алгебра, алгебраическая логика и базы данных. М.: Наука. 1991. 448 с.
- Бурбаки Н. Теория множеств. М.: Мир. 1965. 455 с.
- Мелихов А.Н. Ориентированные графы и конечные автоматы. М.: Наука. 1971. 416 с.
- Курант Р., Роббинс Г. Что такое математика? 3-е изд., испр. и доп. М.: МЦНМО. 2001. 568 с.
- Chang С.-L., LeeR^.-T. Symbolic Logic and Mechanical Theorem Proving. New York: Academic Press. 1973. 331 p.
- Порецкий П.С. Решение общей задачи теории вероятностей при помощи математической логики // Собрание протоколов заседаний секции физико-математических наук общества естествоиспытателей при Казанском университете. Казань: 1887. Т.5. С.83-116.
- Мерекин Ю.В. Решение задач вероятностного расчёта однотактных схем методом ортогонализации // Вычислительные системы. Сборник трудов Института математики СО АН СССР. 1963. Вып.4. С.10-21.
- Рябинин И.А. Надёжность и безопасность структурно-сложных систем. СПб.: Политехника. 2000. 248 с.
- Цициашвили Г.Ш. Логико-вероятностное моделирование по модульному принципу // Дальневосточный математический журнал. 2019. Т. 19. № 1. С.114-118.
- Кулик Б.А., Зуенко А.А., Фридман А.Я. Алгебраический подход к интеллектуальной обработке данных и знаний. СПб.: Изд-во Политехн. ун-та. 2010. 235 с.
- Кулик Б.А. Новые классы КНФ с полиномиально распознаваемым свойством выполнимости // Автоматика и телемеханика. 1995. № 2. С.111-124.
- Pelletier F.J. Seventy-Five Problems for Testing Automatic Theorem Provers // Journal of Automated Reasoning. 1986. Vol. 2. P.191-216.