Kinetic patterns of obtaining of dibutoxyethyl adipates

Автор: Vikharevа I.N., Kruchinina P.A., Enikeeva D.V., Sharapova I.T., Nikolaev D.V.

Журнал: Вестник Южно-Уральского государственного университета. Серия: Химия @vestnik-susu-chemistry

Рубрика: Органическая химия

Статья в выпуске: 4 т.16, 2024 года.

Бесплатный доступ

It is known that adipic acid esters are widely used in various industries, for example, as plasticizers, components of aviation synthetic oils, hydraulic and hydraulic brake fluids, and instrument oils. Their advantages are based on low toxicity, environmental safety and biodegradability. In addition, methods for producing adipic acid from renewable raw materials have now been developed. Classic acid catalysis of esterification using sulfuric acid has a number of disadvantages that contribute to a decrease in the yield of the product and its purity, and therefore the process is characterized by additional stages of ester purification, an increase in its cost and the formation of aggressive wastewater. Heterogeneous catalysis is one of the methods of green chemistry. Therefore, the development of new catalysts of this type and the study of the basic principles of synthesis with their participation are relevant. In ester production, the choice of alcohol component is one of the main factors limiting the rate of esterification. In order to optimize the process of obtaining adipate esters, the kinetic patterns of synthesis using ethoxylated alcohols were studied. A mathematical model of the kinetic parameters of adipic acid esterification was developed, which provides maximum yield of the target ester and shorter synthesis duration. The main characteristics of the process of obtaining adipates of ethoxylated alcohols using catalysts of heterogeneous and homogeneous nature are considered.

Еще

Adipate ester, esterification, ethoxylated alcohol, kinetic patterns, mathematical model, rate

Короткий адрес: https://sciup.org/147246058

IDR: 147246058   |   DOI: 10.14529/chem240414

Список литературы Kinetic patterns of obtaining of dibutoxyethyl adipates

  • Wypych G. Handbook of plasticizers. Canada: ChemTec Publishing, 2017. 870 p. ISBN 1927885167, 9781927885161
  • Hsissou R., Seghiri R., Benzekri Z. et al. // Composite Structures. 2021. V. 262. P. 113640. DOI: 10.1016/j.compstruct.2021.113640
  • Schiller M. Additives to PVC. Composition, properties, application. Moscow: Profession, 2017. P. 400.
  • Stipek J., Daoust H. Additives for Plastics. Berlin: Springer Science & Business Media, 2012. P. 243.
  • Wilkes C.E., Summers J.W., Daniels C.A., Berard M.T. PVC Handbook. Cincinnati: Hanser Publications. 2005.525 р.
  • Godwin A.D. Plasticizers. Applied Plastics Engineering Handbook. Elsevier, 2017. 533 p.
  • Chanda M., Roy S.K. Plastics technology handbook. CRC Press. 2006. P. 896.
  • URL: https://www.plasticisers.org/plasticisers/
  • White S.R., Moore J.S., Sottos N.R. et al. // Science. 2014. V. 344. P. 620. DOI: 10.1126/science.1251135
  • Vikhareva I.N., Zaripov I.I., Kinzyabulatova D.F. et al. // Nanotechnologies in Construction. 2020. V. 12, No. 6. P. 320. DOI: 10.15828/2075-8545-2020-12-6-320-325
  • Vikhareva I.N., Buylova E.A., Yarmuhametova G.U., Aminova G.K., Mazitova A.K. // Journal of chemistry. 2021. Article ID 5099705. DOI: 10.1155/2021/5099705
  • Carey F.A., Sundberg R.J. Advanced Organic Chemistry: Part A: Structure and Mechanisms. New York: Springer Science & Business Media. 2007. P. 1203.
  • Weissermel, K., Arpe H-J. Industrial Organic Chemistry. Weinheim: John Wiley & Sons. 2008. P. 511.
  • Mazitova A.K., Vikhareva I.N., Aminova G.K. // Polymers. 2021. V. 13. P. 1761. DOI: 10.3390/polym13111761
  • Vikhareva I.N., Aminova G.K., Mazitova A.K. // Molecules. 2021, No. 26(16). P. 4833. DOI: 10.3390/molecules26164833
  • Menshchikova A.A., Filatova E.V., Varlamova E.V. et al. // Advances in Chemistry and Chemical Technology. 2017. V. 31, No. 12(193). P. 66.
  • Glazko I.L., Guryanova O.P., Levanova S.V. et al. // Journal of Applied Chemistry. 2005. No. 78(6). P. 972. DOI:
  • Glazko I.L., Levanova S.V., Sokolov A.B. et al. // Chemical industry today. 2010. V. 8. P. 26.
  • Safronov S.P., Krasnykh E.L., Levanova S.V. et al. // Chemical industry today. 2013. V. 9. P. 4.
  • Bayramova Z.E., Magerramov A.M., Magerramov M.N. et al. // Chemistry and chemical technology. 2012. No. 55(1). P. 115.
  • Schwarzenbach, R.P., Gschwend P.M., Imboden D.M. Environmental Organic Chemistry. John Wiley & Sons. 2016. P. 1024.
  • Mazitova A.K., Vikhareva I.N., Aminova G.K. et al. // Polymers. 2020. V. 12. P. 1728. DOI: 10.3390/polym12081728
  • Vikhareva I.N., Aminova G.K., Moguchev A.I. et al. // Advances in Polymer Technology. 2021. V. 2021. Article ID 5593184. DOI: 10.1155/2021/5593184
  • Wolska J., Stawicka K., Walkowiak-Kulikowska J. // Materials Chemistry and Physics. 2021. V. 273. P. 125132. DOI: 10.1016/j.matchemphys.2021.125132
  • Yuan B., Wang Y., Wang M. et al. // Applied Catalysis A: General. 2021. V. 622. P. 118212. DOI: 10.1016/j.apcata.2021.118212
Еще
Статья научная