Kinetic photometric determination of oxalate by its activation effect on catalytic oxidation of iodide and formation of iodine-starch complex

Бесплатный доступ

A method for the kinetic photometric determination of oxalate ion in aqueous solutions, including extracts from foodstuffs, has been suggested. The initial rate method has been used: the straight parts of kinetic curves (approximately 5 min) are processed by the least square method to get the slope coefficients used as analytical signals. The procedure is based upon the oxalate ion action as an activator in the iron(II)-catalyzed reaction of iodide oxidation by potassium bromate. Unlike the previously used light absorbance in the UV region, the suggested procedure controls the rate of the iodine-starch complex formation at 590 nm. The greatest initial rate for the reaction is at pH 5.05 of the acetate buffer solution and the optimal concentration of soluble starch 0.30 mg/mL. The calibration graph is linear in the oxalate concentration range (0.1-10) mg/mL. In this interval precision error varies between 0.67 % and 4.71 %, accuracy error is within (0.22-9.30) %. The procedure has been applied to food analysis by the standard addition method. Aqueous extract has been obtained from 2.5 g of finely chopped sample of raw beet, stirred with 100 mL of water for 1 h, centrifuged, filtered, and quantitatively transferred to 250-mL volumetric flask. Determination of oxalate in 1-mL aliquot has required the same volume of colored beet extract for a reference solution, but otherwise the procedure stands valid. The oxalate content has been found to equal (379 ± 2) mg/g of the raw beet (P = 0,95; n = 4), with 0.6 % precision error and 3.0 % accuracy error.

Еще

Oxalate ion, kinetic analysis, initial rate method, bromate ion, iron(ii), iodine, soluble starch, food analysis

Короткий адрес: https://sciup.org/147235337

IDR: 147235337   |   DOI: 10.14529/chem210307

Список литературы Kinetic photometric determination of oxalate by its activation effect on catalytic oxidation of iodide and formation of iodine-starch complex

  • Sadritdinova R.R. Preparation of Oxalic Acid. Modern Problems of Science and Education, 2016, vol. 25, no. 67, pp. 23–25.
  • Abratt V.R., Reid S.J. Oxalate-Degrading Bacteria of the Human Gut as Probiotics in the Man-agement of Kidney Stone Disease. Adv. Appl. Microbiol., 2010, vol. 72, pp. 63–87. DOI: 10.1016/S0065-2164(10)72003-7.
  • Massey L.K., Whiting S.J. Dietary Salt, Urinary Calcium, and Kidney Stone Risk. Nutr. Rev, 1995, vol. 53, no. 5, pp. 131–139. DOI: 10.1111/j.1753-4887.1995.tb01536.x.
  • Robertson W.G., Peacock M., Heyburn P.J., Marshall D.H., Clark P.B. Risk Factors in Calcium Stone Disease of the Urinary Tract. Br. J. Urol., 1978. vol. 50, pp. 449–454. DOI: 10.1111/j.1464-410x.1978.tb06189.x.
  • Barlow I.M. Obviating Interferences in the Assay of Urinary Oxalate. Clin. Chem, 1987, vol. 33, pp. 855–858. DOI: 10.1007/978-1-4471-1626-4_2
  • Hu H.C., Jin H.J., Chai X.S. A Practical Headspace Gas Chromatographic Method for the Deter-mination of Oxalate in Bleaching Effluents. J. Ind. Eng. Chem, 2014, vol. 20, no. 1, pp. 13–16. DOI:10.1016/j.jiec.2013.02.041.
  • Baadenhuijsen H., Jansen A.P. Colorimetric Determination of Urinary Oxalate Recovered as Cal-cium Oxalate. Clin. Chem. Acta, 1975, vol. 62, no. 2, pp. 315–324. DOI: 10.1016/0009-8981(75)90243-0.
  • Petrarulo M., Cerelli E., Marangella M., Cosseddu D., Vitale C., Linari F. Assay of Plasma Oxa-late with Soluble Oxalate Oxidase. Clin. Chem, 1994, vol. 40, no. 11, pp. 2030–2034. DOI:10.1093/clinchem/40.11.2030.
  • Gottstein H.D., Zook M.N., Kuc J.A. Detection and Quantitation of Oxalic Acid by Capillary Gas Chromatography. J. Chromatogr. A, 1989, vol. 481, pp. 55–61.
  • Yusenko E., Polyntseva E., Lyzhova A., Kalyakina O. Determination of Oxalate and Some In-organic Anions in Green and Black Tea. Proc. Latv. Acad. Sci., Sect. B, 2013, vol. 67, no. 4–5, pp. 429–432. DOI:10.2478/prolas-2013-0076.
  • Maya F., Estela J.M.L., Cerda V. Multisyringe Ion Chromatography with Chemiluminescence Detection for the Determination of Oxalate in Beer and Urine Samples. Microchim. Acta, 2011, vol. 173, no. 1, pp. 33–41. DOI: 10.1007/s00604-010-0511-1.
  • Lachenmeier D.W., Richling E., Lopez M.G., Frank W., Schreier P. Multivariate Analysis of FTIR and Ion Chromatographic Data for the Quality Control of Tequila. J. Agric. Food Chem., 2005, vol. 53, no. 6, pp. 2151–2157. DOI: 10.1021/jf048637f.
  • Keevil B.G., Thornton S. Quantification of Urinary Oxalate by Liquid Chromatography –Tandem Mass Spectrometry with Online Weak Anion Exchange Chromatography. Clin Chem., 2006, vol. 52, no. 12, pp. 2296–2299. DOI: 10.1373/clinchem.2006.075275.
  • Adeniyi S.A., Orjiekwe C.L., Ehiagbonare J.E. Determination of Alkaloids and Oxalates in some Selected Food Samples in Nigeria. Afr. J. Biotechnol., 2009, vol. 8, no. 1, pp. 110–112.
  • Rhaman M.M., Fronczek F.R., Powell D.R., Hossain M.A. Colourimetric and Fluorescent De-tection of Oxalate in Water by a New Macrocycle-Based Dinuclear Nickel Complex: A Remarkable Red Shift of the Fluorescence Band. Dalton Trans., 2014, vol. 43, no. 12, pp. 4618–4621. DOI: 10.1039/c3dt53467g.
  • Hu M., Feng G. Highly Selective and Sensitive Fluorescent Sensing of Oxalate in Water. Chem. Commun., 2012, vol. 48, no. 55, pp. 6951–6953. DOI: 10.1039/c2cc33191h.
  • He C., Qian X., Xu Y., Yang C., Yin L., Zhu W. A Ratiometric Fluorescent Probe for Oxalate Based on Alkyne-Conjugated Carboxamidoquinolines in Aqueous Solution and Imaging in Living Cells. Dalton Trans., 2011, vol. 40, no. 5, pp. 1034–1037. DOI: 10.1039/c0dt01364a.
  • Bernstein L., Khan A. Rapid Spectrophotometric Determination of Oxalate in Beer and Wort. Proc. Am. Soc. Brew. Chem., 1973, vol. 31, no. 1, pp. 20–23.
  • Allan A.L., Band B.S.F., Rubio E. Spectrophotometric Determination of Oxalate in Aqueous Solution. Microchem. J., 1986, vol. 34, no. 1, pp. 51–55. DOI: 10.1016/0026-265X(86)90101-3.
  • Zhai Q.-Z., Zhang X.-X., Liu Q.-Z. Catalytic Kinetic Spectrophotometry for the Determination of Trace Amount of Oxalic Acid in Biological Samples with Oxalic Acid – Rhodamine B –Potassium Dichromate System. Spectrochim. Acta, Part A, 2006, vol. 65, no. 1, pp. 1–4. DOI: 10.1016/j.saa.2005.07.080.
  • Chamjangali A.M., Sharif-Razavian L., Yousefi M., Amin A.H. Determination of Trace Amounts of Oxalate in Vegetable and Water Samples Using a New Kinetic–Catalytic Reaction System. Spectrochim. Acta, Part A, 2009, vol. 73, no. 1, pp. 112–116. DOI: 10.1016/j.saa.2009.01.027.
  • Chamjangali M.A., Keley V., Bagherian G. Kinetic Spectrophotometric Method for the Deter-mination of Trace Amounts of Oxalate by an Activation Effect. Anal. Sci, 2006, vol. 22, no. 2, pp. 333–336. DOI: 10.2116/analsci.22.333.
  • Hanson C.F., Frankos V.H., Thompson W.O. Bioavailability of Oxalic Acid from Spinach, Sug-ar Beet Fibre and a Solution of Sodium Oxalate Consumed by Female Volunteers. Food Chem. Toxicol., 1989, vol. 27, no. 3, pp. 181–184. DOI: 10.1016/0278-6915(89)90067-7.
  • Massey L.K., Food Oxalate: Factors Affecting Measurement, Biological Variation, and Bioavai-lability. J. Am. Diet. Assoc., 2007, vol. 107, no. 7, pp. 1191–1194. DOI: 10.1016/j.jada.2007.04.007.
  • Akhtar M.S., Israr B., Bhatty N., Ali A. Effect of Cooking on Soluble and Insoluble Oxalate Contents in Selected Pakistani Vegetables and Beans. Int. J. Food Prop., 2011, vol. 14, no. 1, pp. 241–249. DOI: 10.1080/10942910903326056.
Еще
Статья научная