Клеточные и гуморальные механизмы регенерации почки

Автор: Кирпатовский В.И., Соколов М.А., Рабинович Э.З., Сивков А.В.

Журнал: Экспериментальная и клиническая урология @ecuro

Рубрика: Нефрология

Статья в выпуске: 2, 2017 года.

Бесплатный доступ

Целью статьи является проведение анализа современной литературы по изучению механизмов регенерации почки при ее ишемическом или токсическом повреждении. В обзоре проанализированы данные о наличии и идентификации стволовых/ прогениторных клеток в почке взрослого организма. Установлено наличие этих клеток в различных почечных структурах (клубочках, канальцах). Однако их ведущая роль в регенерации поврежденных почечных структур в последние годы стала подвергаться сомнению. Накапливаются данные, что не менее важную роль играет процесс де-дифференцировки зрелых почечных клеток с их последующей пролиферацией и дифференцировкой в соответствующие клеточные линии (подоциты, эпителиоциты, эндотелиоциты). Обсуждаются механизмы, запускающие этот процесс, в том числе воздействие компонентов погибших клеток, а также влияние активации резидентных стволовых клеток и продуктов их секреции. Анализируется также роль нарушения микроциркуляции при ишемическом или токсическом повреждении почек и участие в этом процессе перицитов, а также влияние клеточной терапии на восстановление микроциркуляции и регенераторный потенциал поврежденного органа. Также проанализирована терапевтическая эффективность использования клеточной терапии или биологически активных компонентов, секретируемых стволовыми/прогениторными клетками в восстановлении функции поврежденной почки. При этом показано, что эффективность продуктов секреции стволовых/ прогениторных клеток, полученных в результате их культивирования (так называемый «секретом»), не уступает эффективности использования самих клеток.

Еще

Почка, регенерация, стволовые/прогениторные клетки, клеточная терапия, регенеративная медицина

Короткий адрес: https://sciup.org/142188184

IDR: 142188184

Список литературы Клеточные и гуморальные механизмы регенерации почки

  • Meyer-Schwesinger C. The role of renal progenitors in renal regeneration. Nephron 2016;132:101-109 DOI: 10.1159/000442180
  • Suzuki E, Fujita D, Takahashi M, Oba S, Nishimatsu H. Adult stem cells as a tool for kidney regeneration. World J Nephrol 2016;5(1):43-52. doi: 10.5527/wjn.v5.i1.43.
  • Maeshima A, Sakurai H, Nigam SK. Adult kidney tubular cell population showing phenotypic plasticity, tubulogenic capacity, and integration capability into developing kidney. J Am Soc Nephrol 2006;17(1):188-198.
  • Miya M, Maeshima A, Mishima K, Sakurai N, Ikeuchi H, Kuroiwa T, et al. Age-related decline in label-retaining tubular cells: implication for reduced regenerative capacity after injury in the aging kidney. Am J Physiol Renal Physiol 2012302(6): F694-702 DOI: 10.1152/ajprenal.00249.201
  • Challen GA, Bertoncello I, Deane JA, Ricardo SD, Little MH. Kidney side population reveals multilineage potential and renal functional capacity but also cellular heterogeneity. J Am Soc Nephrol 2006;17(7):1896-1912.
  • Iwatani H, Ito T, Imai E, Matsuzaki Y, Suzuki A, Yamato M, et al. Hematopoietic and non hematopoietic potentials of Hoechst low/side population cells isolated from adult rat kidney. Kidney Int 2004;65(5):1604-1614.
  • Lindgren D, Boström AK, Nilsson K, Hansson J, Sjölund J, Möller C, et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am J Pathol 2011;178:828-837 DOI: 10.1016/j.ajpath.2010.10.026
  • Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F, et al. Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol 2006;17(9):2443-56.
  • Angelotti ML, Ronconi E, Ballerini L, Peired A, Mazzinghi B, Sagrinati C, et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 2012;30(8):1714-1725 DOI: 10.1002/stem.1130
  • Ronconi E, Sagrinati C, Angelotti ML, Lazzeri E, Mazzinghi B, Ballerini L, et al. Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol 2009;20(2):322-332 DOI: 10.1681/ASN.2008070709
  • Shankland SJ, Pippin JW, Duffield JS. Progenitor cells and podocyte regeneration. Semin Nephrol 2014;34(4):418-428 DOI: 10.1016/j.semnephrol.2014.06.008
  • Wanner N, Hartleben B, Herbach N, Goedel M, Stickel N, Zeiser R, et al. Unraveling the role of podocyte turnover in glomerular aging and injury. J Am Soc Nephrol 2014;25(4):707-716 DOI: 10.1681/ASN.2013050452
  • Lasagni L, Angelotti ML, Ronconi E, Lombardi D, Nardi S, Peired A, et al. Podocyte regeneration driven by renal progenitors determines glomerular disease remission and can be pharmacologically enhanced. Stem Cell Report 2015;5(2):248-63 DOI: 10.1016/j.stemcr.2015.07.003
  • May CJ, Saleem M, Welsh GI. Podocyte dedifferentiation: a specialized process for a specialized cell. Front Endocrinol (Lausanne). 2014;5:148. doi: 10.3389/fendo.2014.00148.
  • Sakamoto K, Ueno T, Kobayashi N, Hara S, Takashima Y, Pastan I, et al. The direction and role of phenotypic transition between podocytes and parietal epithelial cells in focal segmental glomerulosclerosis. Am J Physiol Renal Physiol. 2014;306(1):F98-F104 DOI: 10.1152/ajprenal.00228.2013
  • Zhang J, Hansen KM, Pippin JW, Chang AM, Taniguchi Y, Kroffi RD, et al. De novo expression of podocyte proteins in parietal epithelial cells in experimental aging nephropathy. Am J Physiol Renal Physiol 2012;302(5):F571-80. doi: 10.1152/ajprenal.00516.2011.
  • Pippin JW, Sparks MA, Glenn ST, Buitrago S, Coffman TM, Duffield JS, et al. Cells of renin lineage are progenitors of podocytes and parietal epithelial cells in experimental glomerular disease. Am J Pathol 2013;183(2):542-57. doi: 10.1016/j.ajpath.2013.04.024.
  • Rinkevich Y, Montoro DT, Contreras-Trujillo H, Harari-Steinberg O, Newman AM, Tsai JM, et al. In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration. Cell Rep 2014;7:1270-1283 DOI: 10.1016/j.celrep.2014.04.018
  • Hansson J, Hultenby K, Cramnert C, Pontén F, Jansson H, Lindgren D, et al. Evidence for a morphologically distinct and functionally robust cell type in the proximal tubules of human kidney. Flum Pathol 2014;45(2):382-93. doi: 10.1016/j.humpath.2013.10.003.
  • Santeramo I, Herrera Perez Z, Illera A, Taylor A, Kenny S, Murray P, et al. Cells ameliorate acute kidney injury without engrafting into renal tissue. Stem Cells Transl Med 2017;6(5):1373-1384 DOI: 10.1002/sctm.16-0352
  • Liu X, Liu H, Sun L, Chen Z, Nie H, Sun A, et al. The role of long-term label-retaining cells in the regeneration of adult mouse kidney after ischemia/reperfusion injury. Stem Cell Res Ther 2016;7(1):68 DOI: 10.1186/s13287-016-0324-1
  • Vogetseder A, Picard N, Gaspert A, Walch M, Kaissling B, Le Hir M. Proliferation capacity of the renal proximal tubule involves the bulk of differentiated epithelial cells. Am J Physiol Cell Physiol 2008;294(1):C22-C28.
  • Kusaba T, Lalli M, Kramann R, Kobayashi A, Humphreys BD. Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci U S A 2014;111(4):1527-32. doi: 10.1073/pnas. 1310653110.
  • Humphreys BD, Czerniak S, DiRocco DP, Hasnain W, Cheema R, Bonventre JV. Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci U S A 2011;108(22):9226-31 DOI: 10.1073/pnas.1100629108
  • Kramann R, Humphreys BD. Kidney pericytes: roles in regeneration and fibrosis. Semin Nephrol 2014;34(4):374-383 DOI: 10.1016/j.semnephrol.2014.06.004
  • Fligny C, Duffield JS. Activation of pericytes: recent insights into kidney fibrosis and microvascular rarefaction. Curr Opin Rheumatol 2013; 25(1):78-86 DOI: 10.1097/B0R.0b013e32835b656b
  • Kida Y, Ieronimakis N, Schrimpf C, Reyes M, Duffield JS. EphrinB2 reverse signaling protects against capillary rarefaction and fibrosis after kidney injury. J Am Soc Nephrol. 2013;24(4):559-72 DOI: 10.1681/ASN.2012080871
  • Basile DP. Rarefaction of peritubular capillaries following ischemic acute renal failure: a potential factor predisposing to progressive nephropathy. Curr Opin Nephrol Hypertens 2004;13(1):1-7.
  • Hörbelt M, Lee SY, Mang HE, Knipe NL, Sado Y, Kribben A, et al. Acute and chronic microvascular alterations in a mouse model of ischemic acute kidney injury. Am J Physiol Renal Physiol 2007; 293(3):F688-95.
  • Lin SL, Chang FC, Schrimpf C, Chen YT, Wu CF, Wu VC, et al. Targeting en-dotheliumpericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am J Pathol 2011;178(2):911-23 DOI: 10.1016/j.ajpath.2010
  • Oh DJ, Dursun B, He Z, Lu L, Hoke TS, Ljubanovic D, et al. Fractalkine receptor (CX3CR1) inhibition is protective against ischemic acute renal failure in mice. Am J Physiol Renal Physiol 2008;294(1):F264-71.
  • Miya M, Maeshima A, Mishima K, Sakurai N, Ikeuchi H, Kuroiwa T, et al. Enhancement of invitro human tubulogenesis by endothelial cell-derived factors: implications for in vivo tubular regeneration after injury. Am J Physiol Renal Physiol 2011;301(2):F387-95 DOI: 10.1152/ajprenal.00619.2010
  • Leuning DG, Reinders ME, Li J, Peired AJ, Lievers E, de Boer HC, et al. Human kidney perivascular stromal cells as an organotypic cell source for kidney regenerative medicine. Stem Cells Transl Med 2017;6(2):405-418. doi: 10.5966/sctm.2016-0053.
  • Patschan D., Krupincza K., Patschan S., Zhang Z., Hamby C., Goligorsky M. S. Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: modulation by ischemic preconditionin. Am J Physiol Renal Physiol. 2006;291(1):F176-85.
  • Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC, et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int 2012;82(4):412-27 DOI: 10.1038/ki.2012.105
  • Chen CL, Chou KJ, Fang HC, Hsu CY, Huang WC, Huang CW, et al. Progenitor-like cells derived from mouse kidney protect against renal fibrosis in a remnant kidney model via decreased endothelial mesenchymal transition. Stem Cell Res Ther 2015;6:239 DOI: 10.1186/s13287-015-0241-8
  • Iwasaki M, Adachi Y, Minamino K, Suzuki Y, Zhang Y, Okigaki M, et al. Mobilization of bone marrow cells by G-CSF rescues mice from cisplatin induced renal failure, and M-CSF enhances the effects of GCSF. J Am Soc Nephrol 2005; 16(3):658-66.
  • Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 2005;115(7):1743-1755.
  • Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D. et al. Isolation of renal progenitor cells from adult human kidney. Am J Pathol 2005; 166(2):545-55.
  • Chen YT, Sun CK, Lin YC, Chang LT, Chen YL, Tsai TH et al. Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusioninjury through suppressing oxidative stress and inflammatory reaction. J Transl Med 2011;9:51 DOI: 10.1186/1479-5876-9-51
  • Grgic I, Campanholle G, Bijol V, Wang C, Sabbisetti VS, Ichimura T, et al. Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int 2012;82(2):172-83 DOI: 10.1038/ki.2012.2
  • Nakagawa S, Omura T, Yonezawa A, Yano I, Nakagawa T, Matsubara K. Extracellular nucleotides from dying cells act as molecular signals to promote wound repair in renal tubular injury. Am J Physiol Renal Physiol 2014;307(12): F1404-F1411 DOI: 10.1152/ajprenal.00196.2014
  • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010;140(6):805-820 DOI: 10.1016/j.cell.2010.01.022
  • Campanholle G, Mittelsteadt K, Nakagawa S, Kobayashi A, Lin SL, Gharib SA, et al. TLR-2/TLR-4 TREM-1 signaling pathway is dispensable in inflammatory myeloid cells during sterile kidney injury. PLoS One 2013;8(7):e68640 DOI: 10.1371/journal.pone.0068640
  • Dittmer J, Leyh B. Paracrine effects of stem cells in wound healing and cancer progression (Review). Int J Oncol 2014;44(6):1789-98 DOI: 10.3892/ijo.2014.2385
  • Lavoie JR, Rosu-Myles M. Uncovering the secretes of mesenchymal stem cells. Biochimie 2013;95(12):2212-21 DOI: 10.1016/j.biochi.2013.06.017
  • Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, Schlitt HJ, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immuno. 2012;3:297 DOI: 10.3389/fimmu.2012.00297
  • Katsuda T, Kosaka N, Takeshita F, Ochiya T. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics 2013;13(10-11):1637-53 DOI: 10.1002/pmic.201200373
  • Nickel W, Rabouille C. Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 2009;10(2):148-55 DOI: 10.1038/nrm2617
  • Witwer KW, Buzas EI, Bemis LT, Bora A, Lässer C, Lötvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2013;2 DOI: 10.3402/jev.v2i0.20360
  • Bruno S, Porta S, Bussolati B. Extracellular vesicles in renal tissue damage and regeneration. Eur J Pharmacol 2016;790:83-91 DOI: 10.1016/j.ejphar.2016.06.058
  • Oosthuyzen W, Scullion KM, Ivy JR, Morrison EE, Hunter RW, Starkey Lewis PJ, et al. Vasopressin regulates extracellular vesicle uptake by kidney collecting duct cells. J Am Soc Nephrol 2016;27(11):3345-3355.
  • Dimuccio V, Ranghino A, Pratico Barbato L, Fop F, Biancone L, Camussi G et al. Urinary CD133 extracellular vesicles are decreased in kidney transplanted patients with slow graft function and vascular damage. PLoS One 2014;9(8):e104490 DOI: 10.1371/journal.pone.0104490
  • Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 2009;20(5):1053-67 DOI: 10.1681/ASN.2008070798
  • Ranghino A, Bruno S, Bussolati B, Moggio A, Dimuccio V, Tapparo M, et al. The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury. Stem Cell Res Ther 2017;8(1):24 DOI: 10.1186/s13287-017-0478-5
  • Cantaluppi V1, Medica D1, Mannari C2, Stiaccini G2, Figliolini F1, Dellepiane S1, et al. Endothelial progenitor cell-derived extracellular vesicles protect from complement-mediated mesangial injury in experimental anti-Thy1.1 glomerulonephritis. Nephrol Dial Transplant 2015;30(3):410-22 DOI: 10.1093/ndt/gfu364
  • Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L, et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One 2012;7(3):e33115. doi: 10.1371/journal.pone.0033115.
  • Tran C, Damaser MS. Stem cells as drug delivery methods: Application of stem cell secretome for regeneration. Adv Drug Deliv Rev 2015;82-83:1-11. doi: 10.1016/j.addr.2014.10.007.
  • Boomsma RA, Geenen DL. Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS One 2012;7(4):e35685 DOI: 10.1371/journal.pone.0035685
  • De Luca A, Gallo M, Aldinucci D, Ribatti D, Lamura L, D'Alessio A, et al. Role of the EGFR ligand/receptor system in the secretion of angiogenic factors in mesenchymal stem cells. J Cell Physiol. 2011;226(8):2131-8 DOI: 10.1002/jcp.22548
  • Li B, Zhang H, Zeng M, He W, Li M, Huang X, et al. Bone marrow mesenchymal stem cells protect alveolar macrophages from lipopolysaccharide-induced apoptosis partially by inhibiting tHe Wnt/beta-catenin pathway. Cell Biol Int 2015;39(2): 192-200 DOI: 10.1002/cbin.10359
  • Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, et al. The stem cell secretome and its role in brain repair. Biochimie 2013;95(12):2271-85 DOI: 10.1016/j.biochi.2013.06.020
  • Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG. Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol. 2007;18(9):2486-96.
  • van Koppen A, Joles JA, van Balkom BW, Lim SK, de Kleijn D, Giles RH, et al. Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease. PLoS One 2012;7(6):e38746 DOI: 10.1371/journal.pone.0038746
  • Maeshima A, Nakasatomi M, Nojima Y. Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy. Biomed Res Int 2014;2014:595493 DOI: 10.1155/2014/595493
  • Chen J, Chen J-K, Harris RC. Deletion of the epidermal growth factor receptor in renal proximal tubule epithelial cells delays recovery from acute kidney injury. Kidney Int 2012;82(1):45-52 DOI: 10.1038/ki.2012.43
  • Zhou D, Tan RJ, Lin L, Zhou L, Liu Y. Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int 2013;84(3):509-20 DOI: 10.1038/ki.2013.102
  • Yu SP, Wei Z, Wei L. Preconditioning strategy in stem cell transplantation therapy. Transl Stroke Res 2013;4(1):76-88 DOI: 10.1007/s12975-012-0251-0
  • Han YS, Lee JH, Yoon YM, Yun CW, Noh H, Lee SH. Hypoxia-induced expression of cellular prion protein improves therapeutic potential of mesenchymal stem cells. Cell Death Dis 2016;7(10):e2395 DOI: 10.1038/cddis.2016.310
Еще
Статья научная