Клинические исследования клеточной терапии повреждений миокарда

Автор: А.Г. Попандопуло, М.В. Солопов, В.В. Турчин, В.В. Буше

Журнал: Патология кровообращения и кардиохирургия @journal-meshalkin

Рубрика: Обзоры

Статья в выпуске: 2 т.26, 2022 года.

Бесплатный доступ

Высокая смертность от сердечных заболеваний требует разработки новых терапевтических подходов. Традиционные методы лечения могут обеспечить компенсирующий эффект, улучшить качество жизни пациента, но не устранить потерю миокарда. Доклинические исследования свидетельствуют, что трансплантация стволовых и прогениторных клеток способна стимулировать регенерацию сердечной ткани. В обзоре рассматриваются клинические исследования терапии повреждений миокарда с использованием региональных стволовых клеток, прогениторных клеток и клеток, дифференцированных из эмбриональных стволовых клеток/индуцированных плюрипотентных стволовых клеток. Результаты этих работ подтвердили безопасность и доступность клеточной терапии повреждений миокарда. Однако недостаточная изученность механизмов действия трансплантируемых клеток на миокард и быстрое развертывание клинических исследований, инициированных успехами доклинических испытаний, позволили наблюдать в лучшем случае лишь умеренный терапевтический эффект. В исследованиях с использованием региональных стволовых клеток не удалось достоверно подтвердить их способность дифференцироваться в кардиомиоциты и интегрироваться в миокард, а наблюдаемые улучшения работы сердца связывают с паракринной передачей сигналов. Для восстановления утраченного миокарда более подходящими являются кардиальные производные эмбриональных стволовых клеток/индуцированных плюрипотентных стволовых клеток, но так как количество клинических испытаний с этими типами клеток пока невелико, требуются дополнительные исследования для подтверждения их безопасности и эффективности. При разработке дизайна будущих клинических испытаний клеточной терапии необходимо строго учитывать механизм действия клеток, патофизиологию заболевания и подбирать оптимальный набор конечных точек. Необходимо развивать персонализированную клеточную терапию, которая предполагает выбор источника клеток и пути введения на основе индивидуальных характеристик пациента. Рост числа клинических исследований и активное изучение механизмов действия трансплантируемых клеток на поврежденный миокард позволяют предполагать, что данный тип клеточной терапии может в ближайшем будущем войти в клиническую практику.

Еще

Кардиальные производные эмбриональных стволовых клеток/индуцированных плюрипотентных стволовых клеток, клеточная терапия, клиническое испытание, миокард, региональные стволовые клетки

Короткий адрес: https://sciup.org/142232020

IDR: 142232020   |   DOI: 10.21688/1681-3472-2022-2-17-29

Список литературы Клинические исследования клеточной терапии повреждений миокарда

  • Szummer K., Wallentin L., Lindhagen L., Alfredsson J., Er¬linge D., Held C., James S., Kellerth T., Lindahl B., Ravn-Fischer A., Rydberg E., Yndigegn T., Jernberg T. Improved outcomes in patients with ST-elevation myocardial infarction during the last 20 years are related to implementation of evidence-based treatments: experiences from the SWEDEHEART registry 1995–2014. Eur Heart J. 2017;38(41):3056-3065. PMID: 29020314; PMCID: PMC5837507. https://doi.org/10.1093/eurheartj/ehx515
  • Bergmann O., Bhardwaj R.D., Bernard S., Zdunek S., Barnabe-Heider F., Walsh S., Zupicich J., Alkass K., Buchholz B.A., Druid H., Jovinge S., Frisén J. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98-102. PMID: 19342590; PMCID: PMC2991140. https://doi.org/10.1126/science.1164680
  • Tompkins B.A., Balkan W., Winkler J., Gyöngyösi M., Goliasch G., Fernández-Avilés F., Hare J.M. Preclinical studies of stem cell therapy for heart disease. Circ Res. 2018;122(7):1006-1020. PMID: 29599277; PMCID: PMC7340290. https://doi.org/10.1161/CIRCRESAHA.117.312486
  • Banerjee M.N., Bolli R., Hare J.M. Clinical studies of cell therapy in cardiovascular medicine: Recent developments and future directions. Circ Res. 2018;123(2):266-287. PMID: 29976692; PMCID: PMC8742222. https://doi.org/10.1161/CIRCRESAHA.118.311217
  • Durrani S., Konoplyannikov M., Ashraf M., Haider K.H. Skeletal myoblasts for cardiac repair. Regen Med. 2010;5(6):919-932. PMID: 21082891; PMCID: PMC3074361. https://doi.org/10.2217/rme.10.65
  • Menasche P., Hagege A.A., Scorsin M., Pouzet B., Desnos M., Duboc D., Schwartz K., Vilquin J.T., Marolleau J.P. Myoblast transplantation for heart failure. Lancet. 2001;357(9252):279-280. PMID: 11214133. https://doi.org/10.1016/S0140-6736(00)03617-5
  • Gavira J.J., Nasarre E., Abizanda G., Perez-Ilzarbe M., de Martino-Rodriguez A., Garcia de Jalon J.A., Mazo M., Macias A., García-Bolao I., Pelacho B., Martínez-Caro D., Prósper F. Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. Eur Heart J. 2010;31(8):1013-1021. PMID: 19700775. https://doi.org/10.1093/eurheartj/ehp342
  • Gavira J.J., Herreros J., Perez A., Garcia-Velloso M.J., Barba J., Martin-Herrero F., Cañizo C., Martin-Arnau A., Martí-Climent J.M., Hernández M., López-Holgado N., González-Santos J.M., Martín-Luengo C., Alegria E., Prósper F. Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. J Thorac Cardiovasc Surg. 2006;131(4):799-804. PMID: 16580437. https://doi.org/10.1016/j.jtcvs.2005.11.030
  • Menasche P., Alfieri O., Janssens S., McKenna W., Reichenspurner H., Trinquart L., Vilquin J.-T., Marolleau J.-P., Seymour B., Larghero J., Lake S., Chatellier G., Solomon S., Desnos M., Hagège A.A. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008;117(9):1189-1200. PMID: 18285565. https://doi.org/10.1161/CIRCULATIONAHA.107.734103
  • Brickwedel J., Gulbins H., Reichenspurner H. Long-term follow-up after autologous skeletal myoblast transplantation in ischaemic heart disease. Interact Cardiovasc Thorac Surg. 2014;18(1):61-66. PMID: 24130088; PMCID: PMC3867044. https://doi.org/10.1093/icvts/ivt434
  • Povsic T.J., O'Connor C.M., Henry T., Taussig A., Kereiakes D.J., Fortuin F.D., Niederman A., Schatz R., Spencer R. 4th, Owens D., Banks M., Joseph D., Roberts R., Alexander J.H., Sherman W. A double-blind, randomized, controlled, multicenter study to assess the safety and cardiovascular effects of skeletal myoblast implantation by catheter delivery in patients with chronic heart failure after myocardial infarction. Am Heart J. 2011;162(4):654-662.e1. PMID: 21982657. https://doi.org/10.1016/j.ahj.2011.07.020
  • Luu B., Leistner D.M., Herrmann E., Seeger F.H., Honold J., Fichtlscherer S., Zeiher A.M., Assmus B. Minute myocardial injury as measured by high-sensitive troponin T serum levels predicts the response to intracoronary infusion of bone marrow-derived mononuclear cells in patients with stable chronic post-infarction heart failure: insights from the TOPCARE-CHD registry. Circ Res. 2017;120(12):1938-1946. PMID: 28351842. https://doi.org/10.1161/CIRCRESAHA.116.309938
  • Strauer B.-E., Yousef M., Schannwell C.M. The acute and long-term effects of intracoronary Stem cell transplantation in 191 patients with chronic heARt failure: the STAR-heart study. Eur J Heart Fail. 2010;12(7):721-729. PMID: 20576835. https://doi.org/10.1093/eurjhf/hfq095
  • Sürder D., Manka R., Moccetti T., Lo Cicero V., Emmert M.Y., Klersy C., Soncin S., Turchetto L., Radrizzani M., Zuber M., Windecker S., Moschovitis A., Bühler I., Kozerke S., Erne P., Lüscher T.F., Corti R. Effect of bone marrow-derived mononuclear cell treatment, early or late after acute myocardial infarction: twelve months CMR and long-term clinical results. Circ Res. 2016;119(3):481-490. PMID: 27267068. https://doi.org/10.1161/CIRCRESAHA.116.308639
  • Wollert K.C., Meyer G.P., Müller-Ehmsen J., Tschöpe C., Bonarjee V., Larsen A.I., May A.E., Empen K., Chorianopoulos E., Tebbe U., Waltenberger J., Mahrholdt H., Ritter B., Pirr J., Fischer D., Korf-Klingebiel M., Arseniev L., Heuft H.-G., Brinchmann J.E., Messinger D., Hertenstein B., Ganser A., Katus H.A., Felix S.B., Gawaz M.P., Dickstein K., Schultheiss H.-P., Ladage D., Greulich S., Bauersachs J. Intracoronary autologous bone marrow cell transfer after myocardial infarction: the BOOST-2 randomised placebo-controlled clinical trial. Eur Heart J. 2017;38(39):2936-2943. PMID: 28431003. https://doi.org/10.1093/eurheartj/ehx188
  • Xiao W., Guo S., Gao C., Dai G., Gao Y., Li M., Wang X., Hu D. A randomized comparative study on the efficacy of intracoronary infusion of autologous bone marrow mononuclear cells and mesenchymal stem cells in patients with dilated cardiomyopathy. Int Heart J. 2017;58(2):238-244. PMID: 28190794. https://doi.org/10.1536/ihj.16-328
  • Xiao C., Zhou S., Liu Y., Hu H. Efficacy and safety of bone marrow cell transplantation for chronic ischemic heart disease: a meta-analysis. Med Sci Monit. 2014;20:1768-1777. PMID: 25270584; PMCID: PMC4199404. https://doi.org/10.12659/MSM.892047
  • Tendera M., Wojakowski W., Ruzyłło W., Chojnowska L., Kepka C., Tracz W., Musiałek P., Piwowarska W., Nessler J., Buszman P., Grajek S., Breborowicz P., Majka M., Ratajczak M.Z.; REGENT Investigators. Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) trial. Eur Heart J. 2009;30(11):1313-1321. PMID: 19208649. https://doi.org/10.1093/eurheartj/ehp073
  • Forcillo J., Stevens L.-M., Mansour S., Prieto I., Salem R., Baron C., Roy D.-C., Larose E., Masckauchan D., Noiseux N. Implantation of CD133+ stem cells in patients undergoing coronary bypass surgery: IMPACT-CABG pilot trial. Can J Cardiol. 2013;29(4):441-447. PMID: 23265095. https://doi.org/10.1016/j.cjca.2012.08.009
  • Quyyumi A.A., Vasquez A., Kereiakes D.J., Klapholz M., Schaer G.L., Abdel-Latif A., Frohwein S., Henry T.D., Schatz R.A., Dib N., Toma C., Davidson C.J., Barsness G.W., Shavelle D.M., Cohen M., Poole J., Moss T., Hyde P., Kanakaraj A.M., Druker V., Chung A., Junge C., Preti R.A., Smith R.L., Mazzo D.J., Pecora A., Losordo D.W. PreSERVE-AMI: a randomized, double-blind, placebo-controlled clinical trial of intracoronary administration of autologous CD34+ cells in patients with left ventricular dysfunction post STEMI. Circ Res. 2017;120(2):324-331. PMID: 27821724; PMCID: PMC5903285. https://doi.org/10.1161/CIRCRESAHA.115.308165
  • Henry T.D., Losordo D.W., Traverse J.H., Schatz R.A., Jolicoeur E.M., Schaer G.L., Clare R., Chiswell K., White C.J., Fortuin F.D., Kereiakes D.J., Zeiher A.M., Sherman W., Hunt A.S., Povsic T.J. Autologous CD34+ cell therapy improves exercise capacity, angina frequency and reduces mortality in no-option refractory angina: a patient-level pooled analysis of randomized double-blinded trials. Eur Heart J. 2018;39(23):2208-2216. PMID: 29315376. https://doi.org/10.1093/eurheartj/ehx764
  • Nasseri B.A., Ebell W., Dandel M., Kukucka M., Gebker R., Doltra A., Knosalla C., Choi Y.-H., Hetzer R., Stamm C. Autologous CD133+ bone marrow cells and bypass grafting for regeneration of ischaemic myocardium: the Cardio133 trial. Eur Heart J. 2014;35(19):1263-1274. PMID: 24497345. https://doi.org/10.1093/eurheartj/ehu007
  • Steinhoff G., Nesteruk J., Wolfien M., Kundt G., Börgermann J., David R., Garbade J., Grobe J., Haverich A., Hennig H., Kaminski A., Lotz J., Mohr F.-W., Müller P., Oostendorp R., Ruch U., Sarikouch S., Skorska A., Stamm C., Tiedemann G., Wagner F.M., Wolkenhauer O. Cardiac function improvement and bone marrow response: outcome analysis of the randomized PERFECT phase III clinical trial of intramyocardial CD133(+) application after myocardial infarction. EBioMedicine. 2017;22:208-224. PMID: 28781130; PMCID: PMC5552265. https://doi.org/10.1016/j.ebiom.2017.07.022
  • Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D.J., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-317. PMID: 16923606. https://doi.org/10.1080/14653240600855905
  • Golpanian S., Wolf A., Hatzistergos K.E., Hare J.M. Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiol Rev. 2016;96(3):1127-1168. PMID: 27335447; PMCID: PMC6345247. https://doi.org/10.1152/physrev.00019.2015
  • Weiss A.R.R., Dahlke M.H. Immunomodulation by mesenchymal stem cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol. 2019;10:1191. PMID: 31214172; PMCID: PMC6557979. https://doi.org/10.3389/fimmu.2019.01191
  • Hare J.M., Traverse J.H., Henry T.D., Dib N., Strumpf R.K., Schulman S.P., Gerstenblith G., DeMaria A.N., Denktas A.E., Gammon R.S., Hermiller J.B. Jr, Reisman M.A., Schaer G.L., Sherman W. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54(24):2277-2286. PMID: 19958962; PMCID: PMC3580848. https://doi.org/10.1016/j.jacc.2009.06.055
  • Hare J.M., Fishman J.E., Gerstenblith G., DiFede Velazquez D.L., Zambrano J.P., Suncion V.Y., Tracy M., Ghersin E., Johnston P.V., Brinker J.A., Breton E., Davis-Sproul J., Schulman I.H., Byrnes J., Mendizabal A.M., Lowery M.H., Rouy D., Altman P., Wong Po Foo C., Ruiz P., Amador A., Da Silva J., McNiece I.K., Heldman A.W., George R., Lardo A. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012;308(22):2369-2379. PMID: 23117550; PMCID: PMC4762261. https://doi.org/10.1001/jama.2012.25321
  • Hare J.M., DiFede D.L., Rieger A.C., Florea V., Landin A.M., El-Khorazaty J., Khan A., Mushtaq M., Lowery M.H., Byrnes J.J., Hendel R.C., Cohen M.G., Alfonso C.E., Valasaki K., Pujol M.V., Golpanian S., Ghersin E., Fishman J.E., Pattany P., Gomes S.A., Delgado C., Miki R., Abuzeid F., Vidro-Casiano M., Premer C., Medina A., Porras V., Hatzistergos K.E., Anderson E., Mendizabal A., Mitrani R., Heldman A.W. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM Trial. J Am Coll Cardiol. 2017;69(5):526-537. PMID: 27856208; PMCID: PMC5291766. https://doi.org/10.1016/j.jacc.2016.11.009
  • Gao L.R., Chen Y., Zhang N.K., Yang X.L., Liu H.L., Wang Z.G., Yan X.Y., Wang Y., Zhu Z.M., Li T.C., Wang L.H., Chen H.Y., Chen Y.D., Huang C.L., Qu P., Yao C., Wang B., Chen G.H., Wang Z.M., Xu Z.Y., Bai J., Lu D., Shen Y.H., Guo F., Liu M.Y., Yang Y., Ding Y.C., Yang Y., Tian H.T., Ding Q.A., Li L.N., Yang X.C., Hu X. Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Med. 2015;13:162. PMID: 26162993; PMCID: PMC4499169. https://doi.org/10.1186/s12916-015-0399-z
  • Bartolucci J., Verdugo F.J., González P.L., Larrea R.E., Abarzua E., Goset C., Rojo P., Palma I., Lamich R., Pedreros P.A., Valdivia G., Lopez V.M., Nazzal C., Alcayaga-Miranda F., Cuenca J., Brobeck M.J., Patel A.N., Figueroa F.E., Khoury M. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled trial (RIMECARD trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy]). Circ Res. 2017;121(10):1192-1204. PMID: 28974553; PMCID: PMC6372053. https://doi.org/10.1161/CIRCRESAHA.117.310712
  • See F., Seki T., Psaltis P.J., Sondermeijer H.P., Gronthos S., Zannettino A.C.W., Govaert K.M., Schuster M.D., Kurlansky P.A., Kelly D.J., Krum H., Itescu S. Therapeutic effects of human STRO-3-selected mesenchymal precursor cells and their soluble factors in experimental myocardial ischemia. J Cell Mol Med. 2011;15(10):2117-2129. PMID: 21155976; PMCID: PMC3092801. https://doi.org/10.1111/j.1582-4934.2010.01241.x
  • Hosoda T., D'Amario D., Cabral-Da-Silva M.C., Zheng H., Padin-Iruegas M.E., Ogorek B., Ferreira-Martins J., Yasuzawa-Amano S., Amano K., Ide-Iwata N., Cheng W., Rota M., Urbanek K., Kajstura J., Anversa P., Leri A. Clonality of mouse and human cardiomyogenesis in vivo. Proc Natl Acad Sci USA. 2009;106(40):17169-17174. PMID: 19805158; PMCID: PMC2761310. https://doi.org/10.1073/pnas.0903089106
  • Cianflone E., Torella M., Chimenti C., De Angelis A., Beltrami A.P., Urbanek K., Rota M., Torella D. Adult cardiac stem cell aging: a reversible stochastic phenomenon? Oxid Med Cell Longev. 2019;2019:5813147. PMID: 30881594; PMCID: PMC6383393. https://doi.org/10.1155/2019/5813147
  • Ellison G.M., Vicinanza C., Smith A.J., Aquila I., Leone A., Waring C.D., Henning B.J., Stirparo G.G., Papait R., Scarfò M., Agosti V., Viglietto G., Condorelli G., Indolfi C., Ottolenghi S., Torella D., Nadal-Ginard B. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell. 2013;154(4):827-842. PMID: 23953114. https://doi.org/10.1016/j.cell.2013.07.039
  • Eschenhagen T., Bolli R., Braun T., Field L.J., Fleischmann B.K., Frisén J., Giacca M., Hare J.M., Houser S., Lee R.T., Marbán E., Martin J.F., Molkentin J.D., Murry C.E., Riley P.R., Ruiz-Lozano P., Sadek H.A., Sussman M.A., Hill J.A. Cardiomyocyte regenera¬tion: a consensus statement. Circulation. 2017;136(7):680-686. PMID: 28684531; PMCID: PMC5557671. https://doi.org/10.1161/CIRCULATIONAHA.117.029343
  • Davis D.R. Cardiac stem cells in the post-Anversa era. Eur Heart J. 2019;40(13):1039-1041. PMID: 30933292. https://doi.org/10.1093/eurheartj/ehz098
  • Sultana N., Zhang L., Yan J., Chen J., Cai W., Razzaque S., Jeong D., Sheng W., Bu L., Xu M., Huang G.-Y., Hajjar R.J., Zhou B., Moon A., Cai C.-L. Resident c-kit(+) cells in the heart are not cardiac stem cells. Nat Commun. 2015;6:8701. PMID: 26515110; PMCID: PMC4846318. https://doi.org/10.1038/ncomms9701
  • Sahoo S., Losordo D.W. Exosomes and cardiac repair after myocardial infarction. Circ Res. 2014;114(2):333-344. PMID: 24436429. https://doi.org/10.1161/CIRCRESAHA.114.300639
  • Zwetsloot P.P., Végh A.M.D., Jansen of Lorkeers S.J., van Hout G.P., Currie G.L., Sena E.S., Gremmels H., Buikema J.W., Goumans M.J., Macleod M.R., Doevendans P.A., Chamuleau S.A., Sluijter J.P. Cardiac stem cell treatment in myocardial infarction: a systematic review and meta-analysis of preclinical studies. Circ Res. 2016;118(8):1223-1232. PMID: 26888636. https://doi.org/10.1161/CIRCRESAHA.115.307676
  • Chugh A.R., Beache G.M., Loughran J.H., Mewton N., Elmore J.B., Kajstura J., Pappas P., Tatooles A., Stoddard M.F., Lima J.A., Slaughter M.S., Anversa P., Bolli R. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation. 2012;126(11 Suppl 1):S54-S64. PMID: 22965994; PMCID: PMC3448934. https://doi.org/10.1161/CIRCULATIONAHA.112.092627
  • Li T.-S., Cheng K., Malliaras K., Smith R.R., Zhang Y., Sun B., Matsushita N., Blusztajn A., Terrovitis J., Kusuoka H., Marbán L., Marbán E. Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol. 2012;59(10):942-953. PMID: 22381431; PMCID: PMC3292778. https://doi.org/10.1016/j.jacc.2011.11.029
  • White A.J., Smith R.R., Matsushita S., Chakravarty T., Czer L.S.C., Burton K., Schwarz E.R., Davis D.R., Wang Q., Reinsmoen N.L., Forrester J.S., Marbán E., Makkar R. Intrinsic cardiac origin of human cardiosphere-derived cells. Eur Heart J. 2013;34(1):68-75. PMID: 21659438. https://doi.org/10.1093/eurheartj/ehr172
  • Malliaras K., Makkar R.R., Smith R.R., Cheng K., Wu E., Bonow R.O., Marbán L., Mendizabal A., Cingolani E., Johnston P.V., Gerstenblith G., Schuleri K.H., Lardo A.C., Marbán E. Intracoronary cardiosphere-derived cells after myocardial infarction: Evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol. 2014;63(2):110-122. PMID: 24036024; PMCID: PMC3947063. https://doi.org/10.1016/j.jacc.2013.08.724
  • Ishigami S., Ohtsuki S., Eitoku T., Ousaka D., Kondo M., Kurita Y., Hirai K., Fukushima Y., Baba K., Goto T., Horio N., Kobayashi J., Kuroko Y., Kotani Y., Arai S., Iwasaki T., Sato S., Kasahara S., Sano S., Oh H. Intracoronary cardiac progenitor cells in single ventricle physiology: The PERSEUS (Cardiac Progenitor Cell Infusion to Treat Univentricular Heart Disease) randomized phase 2 trial. Circ Res. 2017;120(7):1162-1173. PMID: 28052915. https://doi.org/10.1161/CIRCRESAHA.116.310253
  • Nakamura K., Murry C.E. Function follows form – a review of cardiac cell therapy. Circ J. 2019;83(12):2399-2412. PMID: 31723070; PMCID: PMC7002039. https://doi.org/10.1253/circj.CJ-19-0567
  • Talkhabi M., Aghdami N., Baharvand H. Human cardiomyocyte generation from pluripotent stem cells: A state-of-art. Life Sci. 2016;145:98-113. PMID: 26682938. https://doi.org/10.1016/j.lfs.2015.12.023
  • Chong J.J.H., Yang X., Don C.W., Minami E., Liu Y.-W., Weyers J.J., Mahoney W.M., Van Biber B., Cook S.M., Palpant N.J., Gantz J.A., Fugate J.A., Muskheli V., Gough G.M., Vogel K.W., Astley C.A., Hotchkiss C.E., Baldessari A., Pabon L., Reinecke H., Gill E.A., Nelson V., Kiem H.-P., Laflamme M.A., Murry C.E. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primatehearts. Nature. 2014;510(7504):273-277. PMID: 24776797; PMCID: PMC4154594. https://doi.org/10.1038/nature13233
  • Stevens K.R., Murry C.E. Human pluripotent stem cell-derived engineered tissues: Clinical considerations. Cell Stem Cell. 2018;22(3):294-297. PMID: 29499147; PMCID: PMC6344123. https://doi.org/10.1016/j.stem.2018.01.015
  • Romagnuolo R., Masoudpour H., Porta-Sánchez A., Qiang B., Barry J., Laskary A., Qi X., Massé S., Magtibay K., Kawajiri H., Wu J., Valdman Sadikov T., Rothberg J., Panchalingam K.M., Titus E., Li R.-K., Zandstra P.W., Wright G.A., Nanthakumar K., Ghugre N.R., Keller G., Laflamme M.A. Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular tachyarrhythmias. Stem Cell Rep. 2019;12(5):967-981. PMID: 31056479; PMCID: PMC6524945. https://doi.org/10.1016/j.stemcr.2019.04.005
  • Menasché P., Vanneaux V., Hagège A., Bel A., Cholley B., Parouchev A., Cacciapuoti I., Al-Daccak R., Benhamouda N., Blons H., Agbulut O., Tosca L., Trouvin J.-H., Fabreguettes J.-R., Bellamy V., Charron D., Tartour E., Tachdjian G., Desnos M., Larghero J. Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol. 2018;71(4):429-438. PMID: 29389360. https://doi.org/10.1016/j.jacc.2017.11.047
  • Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861-872. PMID: 18035408. https://doi.org/10.1016/j.cell.2007.11.019
  • Shiba Y., Gomibuchi T., Seto T., Wada Y., Ichi¬mura H., Tanaka Y., Ogasawara T., Okada K., Shiba N., Sakamoto K., Ido D., Shiina T., Ohkura M., Nakai J., Uno N., Kazuki Y., Oshimura M., Minami I., Ikeda U. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature. 2016;538(7625):388-391. PMID: 27723741. https://doi.org/10.1038/nature19815
  • Kawamura M., Miyagawa S., Fukushima S., Saito A., Miki K., Ito E., Sougawa N., Kawamura T., Daimon T., Shimizu T., Okano T., Toda K., Sawa Y. Enhanced survival of transplanted human induced pluripotent stem cell-derived cardiomyocytes by the combination of cell sheets with the pedicled omental flap technique in a porcine heart. Circulation. 2013;128(11 Suppl 1):S87-S94. PMID: 24030425. https://doi.org/10.1161/CIRCULATIONAHA.112.000366
  • Yoshihara M., Hayashizaki Y., Murakawa Y. Genomic instability of iPSCs: challenges towards their clinical applications. Stem Cell Rev Rep. 2017;13(1):7-16. PMID: 27592701; PMCID: PMC5346115. https://doi.org/10.1007/s12015-016-9680-6
  • Liu X., Li W., Fu X., Xu Y. The immunogenicity and immune tolerance of pluripotent stem cell derivatives. Front Immunol. 2017;8:645. PMID: 28626459; PMCID: PMC5454078. https://doi.org/10.3389/fimmu.2017.00645
  • Nowbar A.N., Mielewczik M., Karavassilis M., Dehbi H.-M., Shun-Shin M.J., Jones S., Howard J.P., Cole G.D., Francis D.P., DAMASCENE writing group. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. BMJ. 2014;348:g2688. PMID: 24778175; PMCID: PMC4002982. https://doi.org/10.1136/bmj.g2688
  • Jayaraj J.S., Janapala R.N., Qaseem A., Usman N., Fathima N., Kashif T., Reddy V.K., Bakshi S. Efficacy and safety of stem cell therapy in advanced heart failure patients: a systematic review with a meta-analysis of recent trials between 2017 and 2019. Cureus. 2019;11(9):e5585. PMID: 31696004; PMCID: PMC6820892. https://doi.org/10.7759/cureus.5585
  • Yoshioka T., Ageyama N., Shibata H., Yasu T., Misawa Y., Takeuchi K., Matsui K., Yamamoto K., Terao K., Shimada K., Ikeda U., Ozawa K., Hanazono Y. Repair of infarcted myocardium mediated by transplanted bone marrow-derived CD34+ stem cells in a nonhuman primate model. Stem Cells. 2005;23(3):355-364. PMID: 15749930. https://doi.org/10.1634/stemcells.2004-0200
  • van Berlo J.H., Kanisicak O., Maillet M., Vagnozzi R.J., Karch J., Lin S.-C.J., Middleton R.C., Marbán E., Molkentin J.D. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature. 2014;509(7500):337-341. PMID: 24805242; PMCID: PMC4127035. https://doi.org/10.1038/nature13309
  • Tang X.-L., Li Q., Rokosh G., Sanganalmath S.K., Chen N., Ou Q., Stowers H., Hunt G., Bolli R. Long-term outcome of administration of c-kit(POS) cardiac progenitor cells after acute myocardial infarction: transplanted cells do not become cardiomyocytes, but structural and functional improvement and proliferation of endogenous cells persist for at least one year. Circ Res. 2016;118(7):1091-1105. PMID: 26838790; PMCID: PMC4818175. https://doi.org/10.1161/CIRCRESAHA.115.307647
  • Wu T., Cieply K., Nalesnik M.A., Randhawa P.S., Sonzogni A., Bellamy C., Abu-Elmagd K., Michalopolous G.K., Jaffe R., Kormos R.L., Gridelli B., Fung J.J., Demetris A.J. Minimal evidence of transdifferentiation from recipient bone marrow to parenchymal cells in regenerating and longsurviving human allografts. Am J Transplant. 2003;3(9):1173-1181. PMID: 12919098. https://doi.org/10.1046/j.1600-6143.2003.00137.x
  • Quevedo H.C., Hatzistergos K.E., Oskouei B.N., Feigenbaum G.S., Rodriguez J.E., Valdes D., Pattany P.M., Zambrano J.P., Hu Q., McNiece I., Heldman A.W., Hare J.M. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci USA. 2009;106(33):14022-14027. PMID: 19666564; PMCID: PMC2729013. https://doi.org/10.1073/pnas.0903201106
  • Dall C., Khan M., Chen C.-A., Angelos M.G. Oxygen cycling to improve survival of stem cells for myocardial repair: A review. Life Sci. 2016;153:124-131. PMID: 27091653. https://doi.org/10.1016/j.lfs.2016.04.011
  • Menasche P. Cardiac cell therapy: current status, challenges and perspectives. Arch Cardiovasc Dis. 2020;113(4):285-292. PMID: 32171698. https://doi.org/10.1016/j.acvd.2020.01.002
  • Kloner R.A. Stunned and hibernating myocardium: where are we nearly 4 decades later? J Am Heart Assoc. 2020;9(3):e015502. PMID: 32013699; PMCID: PMC7033879. https://doi.org/10.1161/JAHA.119.015502
  • Hocum Stone L.L., Swingen C., Wright C., Qi S.S., Rassette M., McFalls E.O., Kelly R.F. Recovery of hibernating myocardium using stem cell patch with coronary bypass surgery. J Thorac Cardiovasc Surg. 2021;162(1):e3-e16. PMID: 32059928. https://doi.org/10.1016/j.jtcvs.2019.12.073
  • Favalli V., Serio A., Giuliani L.P., Arbustini E. ‘Precision and personalized medicine,’ a dream that comes true? J Cardiovasc Med (Hagerstown). 2017;18(Suppl 1):e1-e6. PMID: 27661611. https://doi.org/10.2459/JCM.0000000000000423
  • Alyass A., Turcotte M., Meyre D. From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genomics. 2015;8:33. PMID: 26112054; PMCID: PMC4482045. https://doi.org/10.1186/s12920-015-0108-y
  • Dimmeler S., Leri A. Aging and disease as modifiers of efficacy of cell therapy. Circ Res. 2008;102(11):1319-1330. PMID: 18535269; PMCID: PMC2728476. https://doi.org/10.1161/CIRCRESAHA.108.175943
  • Delewi R., Hirsch A., Tijssen J.G., Schächinger V., Wojakowski W., Roncalli J., Aakhus S., Erbs S., Assmus B., Tendera M., Goekmen Turan R., Corti R., Henry T., Lemarchand P., Lunde K., Cao F., Huikuri H.V., Sürder D., Simari R.D., Janssens S., Wollert K.C., Plewka M., Grajek S., Traverse J.H., Zijlstra F., Piek J.J. Impact of intracoronary bone marrow cell therapy on left ventricular function in the setting of ST-segment elevation myocardial infarction: a collaborative meta-analysis. Eur Heart J. 2014;35(15):989-998. PMID: 24026778; PMCID: PMC4271100. https://doi.org/10.1093/eurheartj/eht372
  • Jokerst J.V., Cauwenberghs N., Kuznetsova T., Haddad F., Sweeney T., Hou J., Rosenberg-Hasson Y., Zhao E., Schutt R., Bolli R., Traverse J.H., Pepine C.J., Henry T.D., Schulman I.H., Moyé L., Taylor D.A., Yang P.C. Circulating biomarkers to identify responders in cardiac cell therapy. Sci Rep. 2017;7(1):4419. PMID: 28667255; PMCID: PMC5493650. https://doi.org/10.1038/s41598-017-04801-7
  • Traverse J.H., Henry T.D., Moye’ L.A. Is the measurement of left ventricular ejection fraction the proper end point for cell therapy trials? An analysis of the effect of bone marrow mononuclear stem cell administration on left ventricular ejection fraction after ST-segment elevation myocardial infarction when evaluated by cardiac magnetic resonance imaging. Am Heart J. 2011;162(4):671-677. PMID: 21982659. https://doi.org/10.1016/j.ahj.2011.06.019
  • Wessler B.S., Kramer D.G., Kelly J.L., Trikalinos T.A., Kent D.M., Konstam M.A., Udelson J.E. Drug and device effects on peak oxygen consumption, 6-minute walk distance, and natriuretic peptides as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction. Circ Heart Fail. 2011;4(5):578-588. PMID: 21705485. https://doi.org/10.1161/CIRCHEARTFAILURE.111.961573
  • Porapakkham P., Porapakkham P., Zimmet H., Billah B., Krum H. B-type natriuretic peptide-guided heart failure therapy: a meta-analysis. Arch Intern Med. 2010;170(6):507-514. PMID: 20308637. https://doi.org/10.1001/archinternmed.2010.35
  • Müller P., Lemcke H., David R. Stem cell therapy in heart diseases – cell types, mechanisms and improvement strategies. Cell Physiol Biochem. 2018;48(6):2607-2655. PMID: 30121644. https://doi.org/10.1159/000492704
Еще
Статья научная