Компьютерное моделирование динамики пешеходов при проектировании и эксплуатации стадионов

Автор: Kirik Ekaterina Sergeevna, Vitova Tatiana Bronislavovna, Malyshev Andrei Valerievich, Popel Egor Viktorovich, Kharlamov Egor Borisovich, Moiseichenko Viacheslav Aleksandrovich, Kalinin Egor Sergeevich, Smirnov Nikolai Vasilevich

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 1 (94), 2021 года.

Бесплатный доступ

Объект исследования - безопасность и комфорт зрителей при перемещении по стадионам и прилегающей территории. Эта работа направлена на то, чтобы показать, как использование компьютерного моделирования помогает анализировать влияние различных условий и проверять окружающую среду стадиона с точки зрения комфорта и безопасности людей. Метод. Применяется компьютерное моделирование динамики пешеходов и анализ результатов. Полученные результаты. Было рассмотрено несколько арен. Изучено влияние клиентских групп, планировки стадиона и прилегающей территории, включая особенности ландшафта, временную инфраструктуру. Выявлены участки с высокой плотностью (или скоплениями), где сосредоточена потенциальная угроза для людей в случае максимальной загрузки стадионов. Предложены и проверены способы избежать угроз с помощью компьютерного моделирования передвижения людей.

Еще

Стадионы, безопасность пешеходов, компьютерное моделирование, автономные агенты, платформа моделирования

Короткий адрес: https://sciup.org/143175779

IDR: 143175779   |   DOI: 10.4123/CUBS.94.1

Список литературы Компьютерное моделирование динамики пешеходов при проектировании и эксплуатации стадионов

  • Stampede at Honduras stadium kills 5, injures dozens ahead of national football finals. URL: https://www.rt.com/sport/390021-stampede-tegucigalpa-football-stadium/ (date of application: 27.12.2020).
  • Angola stadium stampede in Uige kills 17. URL: https://www.bbc.com/news/world-africa-38939723 (date of application: 26.12.2020).
  • Egypt football violence leaves many dead in Port Said. URL: https://www.bbc.com/news/world-middle-east-16845841 (date of application: 28.12.2020).
  • Kenya football stampede kills seven. URL: https://www.bbc.com/news/world-africa-38939723 (date of application: 26.12.2020).
  • 82 fans die in World Cup stadium crush. URL: https://www.independent.co.uk/news/world/82-fans-die-in-world-cup-stadium-crush-1358912.html (date of application: 26.12.2020).
  • 1989: Football fans crushed at Hillsborough. URL: http://news.bbc.co.uk/onthisday/hi/dates/stories/april/15/newsid_2491000/2491195.stm (date of application: 28.12.2020).
  • The death toll in a 1982 soccer... URL: https://www.latimes.com/archives/la-xpm-1989-07-22-sp-3399-story.html (date of application: 28.12.2020).
  • Music: The Stampede to Tragedy. URL: http://content.time.com/time/subscriber/article/0,33009,920746,00.html (date of application: 28.12.2020).
  • Lima 1964: The world's worst stadium disaster. URL: https://www.bbc.com/news/magazine-27540668 (date of application: 28.12.2020).
  • Chraibi, M., Seyfried, A., Schadschneider, A. Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E. 2010. 82(4). Pp. 46111. DOI:10.1103/PhysRevE.82.046111. URL: https://link.aps.org/doi/10.1103/PhysRevE.82.046111.
  • Helbing, D., Farkas, I., Vicsek, T. Simulating dynamical features of escape panic. Nature. 2000. 407(6803). Pp. 487–490. DOI:10.1038/35035023. URL: https://doi.org/10.1038/35035023.
  • Kirchner, A., Schadschneider, A. Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A: Statistical Mechanics and its Applications. 2002. 312(1). Pp. 260–276. DOI:https://doi.org/10.1016/S0378-4371(02)00857-9. URL: http://www.sciencedirect.com/science/article/pii/S0378437102008579.
  • Kuligowski, E.D. Computer Evacuation Models for Buildings. SFPE Handbook of Fire Protection Engineering. Springer New York. New York, NY, 2016. Pp. 2152–2180. DOI: 10.1007/978-1-4939-2565-0_60.
  • Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A. Extended floor field CA model for evacuation dynamics. IEICE Transactions on Information and Systems. 2003. E87-D(3). Pp. 726–732. URL: https://arxiv.org/pdf/cond-mat/0306262.pdf.
  • Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A. Evacuation Dynamics: Empirical Results, Modeling and Applications. Encyclopedia of Complexity and Systems Science. Springer New York. New York, NY, 2009. Pp. 3142–3176. DOI: 10.1007/978-0-387-30440-3_187.
  • Kirik, E., Malyshev, A., Senashova, M. On the Evacuation Module SigmaEva Based on a Discrete-Continuous Pedestrian Dynamics Model. Parallel Processing and Applied Mathematics. Springer International Publishing. Cham, 2016. Pp. 539–549. DOI: 10.1007/978-3-319-32152-3_50.
  • Ronchi, E., Uriz, F.N., Criel, X., Reilly, P. Modelling large-scale evacuation of music festivals. Case Studies in Fire Safety. 2016. 5. Pp. 11–19. DOI:10.1016/j.csfs.2015.12.002. URL: http://www.sciencedirect.com/science/article/pii/S2214398X15300066.
  • Pretorius, M., Gwynne, S., Galea, E.R. Large crowd modelling: an analysis of the Duisburg Love Parade disaster. Fire and Materials. 2015. 39(4). Pp. 301–322. DOI:10.1002/fam.2214.
  • Wagoum, A.U.K., Seyfried, A. Conception, Development, Installation and Evaluation of a Real Time Evacuation Assistant for Complex Buildings. Procedia - Social and Behavioral Sciences. 2013. 104. Pp. 728–736. DOI:https://doi.org/10.1016/j.sbspro.2013.11.167. URL: http://www.sciencedirect.com/science/article/pii/S1877042813045588.
  • Boltes, M., Seyfried, A. Collecting pedestrian trajectories. Neurocomputing. 2013. 100. Pp. 127–133. DOI:https://doi.org/10.1016/j.neucom.2012.01.036. URL: http://www.sciencedirect.com/science/article/pii/S0925231212003189.
  • Dridi, M. Simulation of High Density Pedestrian Flow: A Microscopic Model. Open Journal of Modelling and Simulation. 2015. 3. Pp. 81–95. DOI:10.4236/ojmsi.2015.33009.
  • Khan, S.D. Congestion detection in pedestrian crowds using oscillation in motion trajectories. Engineering Applications of Artificial Intelligence. 2019. 85. Pp. 429–443. DOI:https://doi.org/10.1016/j.engappai.2019.07.009. URL: http://www.sciencedirect.com/science/article/pii/S0952197619301733.
  • Khan, S.D., Vizzari, G., Bandini, S. A computer vision tool set for innovative elder pedestrians aware crowd management support systems. CEUR Workshop Proceedings. 18032017. Pp. 75–91.
  • Shimura, K., Khan, S.D., Bandini, S., Nishinari, K. Simulation and evaluation of spiral movement of pedestrians: Towards the tawaf simulator. Journal of Cellular Automata. 2016. 11(4). Pp. 275–284.
  • Mitsopoulou, M., Dourvas, N., Georgoudas, I.G., Sirakoulis, G.C. Cellular Automata Model for Crowd Behavior Management in Airports. Parallel Processing and Applied Mathematics. Springer International Publishing. Cham, 2020. Pp. 445–456. DOI: 10.1007/978-3-030-43222-5_39.
  • Davidich, M., Geiss, F., Mayer, H.G., Pfaffinger, A., Royer, C. Waiting zones for realistic modelling of pedestrian dynamics: A case study using two major German railway stations as examples. Transportation Research Part C: Emerging Technologies. 2013. 37. Pp. 210–222. DOI:https://doi.org/10.1016/j.trc.2013.02.016. URL: http://www.sciencedirect.com/science/article/pii/S0968090X13000557.
  • Wang, W.L., Lo, S.M., Liu, S.B., Ma, J. On the Use of a Pedestrian Simulation Model with Natural Behavior Representation in Metro Stations. Procedia Computer Science. 2015. 52. Pp. 137–144. DOI:https://doi.org/10.1016/j.procs.2015.05.048. URL: http://www.sciencedirect.com/science/article/pii/S1877050915008480.
  • Trivedi, A., Pandey, M. Agent Based Modelling and Simulation to estimate movement time of pilgrims from one place to another at Allahabad Jn. Railway Station during Kumbh Mela-2019. Autonomous Agents and Multi-Agent Systems. 2020. 34(1). Pp. 30. DOI:10.1007/s10458-020-09454-x. URL: https://doi.org/10.1007/s10458-020-09454-x.
  • Gravit, M., Dmitriev, I., Kuzenkov, K. Phased evacuation algorithm for high-rise buildings. MATEC Web of Conferences. 2018. 245. Pp. 11012. DOI:10.1051/matecconf/201824511012. URL: https://doi.org/10.1051/matecconf/201824511012.
  • Crowd dynamics. URL: https://www.crowddynamics.com/ (date of application: 28.12.2020).
  • INCONTROL. URL: https://www.incontrolsim.com/software/pedestrian-dynamics/ (date of application: 28.12.2020).
  • STEPS Mott MacDonald. URL: https://www.steps.mottmac.com/ (date of application: 28.12.2020).
  • Legion. URL: https://www.bentley.com/en/products/brands/legion (date of application: 28.12.2020).
  • Oasys. URL: https://www.oasys-software.com/products/pedestrian-simulation/ (date of application: 28.12.2020).
  • Pathfinder. URL: https://www.thunderheadeng.com/pathfinder/ (date of application: 28.12.2020).
  • PedGo. URL: https://www.traffgo-ht.com/en/pedestrians/products/pedgo/index.html (date of application: 28.12.2020).
  • Simulex Thompson. URL: https://www.iesve.com/software/virtual-environment/applications/egress/simulex (date of application: 28.12.2020).
  • Anylogic. URL: https://www.anylogic.ru/airports-stations-shopping-malls/ (date of application: 28.12.2020).
  • 3ksigma. URL: https://3ksigma.ru/proektyi/ (date of application: 28.12.2020).
  • Kirik, E., Malyshev, A., Vitova, T., Popel, E., Kharlamov, E. Pedestrian movement simulation for stadiums design. IOP Conference Series: Materials Science and Engineering. 2018. 456(1). Pp. 012074. DOI:10.1088/1757-899X/456/1/012074. URL: https://iopscience.iop.org/article/10.1088/1757-899X/456/1/012074.
  • Kirik, E., Dekterev, A., Litvintsev, K., Malyshev, A., Kharlamov, E. The solution of fire safety problems under a design stadia with computer fire and evacuation simulation. {IOP} Conference Series: Materials Science and Engineering. 2018. 456. Pp. 012073. DOI:10.1088/1757-899x/456/1/012073. URL: https://doi.org/10.1088%2F1757-899x%2F456%2F1%2F012073.
  • Kirik, E., Vitova, T., Malyshev, A., Popel, E. A Conjunction of the Discrete-Continuous Pedestrian Dynamics Model SigmaEva with Fundamental Diagrams. Parallel Processing and Applied Mathematics. Springer International Publishing. Cham, 2020. Pp. 457–466. DOI: 10.1007/978-3-030-43222-5_40.
  • Kirik, E., Vitova, T. Pedestrian movement: analysis of real experiments in a straight corridor and validation of “Sigma SF” Software. Fire Safety. 2020. 1(98). Pp. 51–62. (rus)
  • Kholshevnikov, V. V, Shields, T.J., Boyce, K.E., Samoshin, D.A. Recent developments in pedestrian flow theory and research in Russia. Fire Safety Journal. 2008. 43(2). Pp. 108–118. DOI:https://doi.org/10.1016/j.firesaf.2007.05.005. URL: http://www.sciencedirect.com/science/article/pii/S0379711207000707.
  • Kholshevnikov, V., Samoshin, D. Evakuaciya i povedenie lyudej pri pozharah [Evacuation and human behavior in fire]. Moscow: Academy of State Fire Service, EMERCOM of Russia, 2009. (rus)
  • Gwynne, S.M. V, Rosenbaum, E.R. Employing the Hydraulic Model in Assessing Emergency Movement. SFPE Handbook of Fire Protection Engineering. Springer New York. New York, NY, 2016. Pp. 2115–2151. DOI: 10.1007/978-1-4939-2565-0_59. DOI: 10.1007/978-1-4939-2565-0_59.
  • Weidmann, U. Transporttechnik der Fussgänger. IVT Schriftenreihe. 1993. DOI:10.3929/ethz-a-000687810.
  • Fruin, J.J. Pedestrian Planning and Design. New York: Metropolitan Association of Urban Designers and Environmental Planners, 1971.
  • Zhang, J., Klingsch, W., Rupprecht, T., Schadschneider, A., Seyfried, A. Empirical study of turning and merging of pedestrian streams in T-junction. arXiv preprint arXiv: 1112.5299. 2011. URL: http://arxiv.org/abs/1112.5299.
Еще
Статья научная