Комплексная оценка эрозионной опасности земель СЗАО «Легостаевское»

Автор: Иванова Ольга Игоревна

Журнал: Вестник Красноярского государственного аграрного университета @vestnik-kgau

Рубрика: Агрономия

Статья в выпуске: 2, 2022 года.

Бесплатный доступ

Цель исследования - проведение оценки эрозионной опасности от водной, ветровой эрозии почв территории хозяйства СЗАО «Легостаевское», расположенного в Новоселовском районе Красноярского края. Объектом исследования являются земли, подверженные эрозионным процессам (от водной и ветровой эрозии почв). В ходе исследования были применены методы наблюдения, измерения, анализа, классификации эродированных земель. При использовании крупномасштабных топографических, почвенных карт были выделены склоны, подверженные эрозионным процессам от ливневых дождей, на которых определена величина потенциального смыва на каждом стометровом отрезке с учетом формы склона, уклона, рельефа, типа почвы. Рассмотрено применение комплекса противоэрозионных мероприятий по результатам расчета потенциального смыва от ливневых вод с учетом класса эрозионной опасности. Проведена оценка потенциального роста оврагов, определены максимальные размеры форм размыва, интенсивность линейной эрозии, стадия развития оврага. Проведена оценка потенциальной дефляции почв, распространения, интенсивности дефляции на территории хозяйства в зависимости от ветрового режима и дефлируемости почвы. На естественный ход природных процессов огромное влияние оказывает хозяйственная деятельность человека. С одной стороны, неразумное пользование землей приводит к усилению процесса деградации почв в результате развития эрозии, потери ею потенциального и эффективного плодородия. Чисто естественные условия территории, где сильно развита эрозия, сами по себе не являются причиной ее развития, они лишь усиливают этот процесс после нарушения равновесия в природе человеком. С другой стороны, рациональное хозяйствование, ведение земледелия на научной основе, учитывающее естественный ход процессов и возможные последствия практической деятельности человека, являяются надежной гарантией сохранения и повышения плодородия земель. Комплекс организационно-хозяйственных агротехнических, мелиоративных, гидротехнических и организационно-хозяйственных мероприятий, в первую очередь противоэрозионная организация территорий, способствует предотвращению эрозионных процессов. В результате проведенного исследования по результатам оценки составлена карта эрозионной опасности земель СЗАО «Легостаевское» Новоселовского района Красноярского края.

Еще

Эрозионные процессы, потенциальный смыв, ливневые воды, овраг, линейная эрозия, противоэрозионные мероприятия

Короткий адрес: https://sciup.org/140292540

IDR: 140292540

Текст научной статьи Комплексная оценка эрозионной опасности земель СЗАО «Легостаевское»

Введение. На территории Восточной Сибири различным видам эрозии подвержено большое количество пахотных земель, что составляет почти половину ее общей площади в зоне. Особенности почвенно-климатических условий на территории Восточной Сибири, хозяйственная деятельность человека накладывают специфические особенности на развитие эрозионных процессов. Интенсивный ветровой режим, континентальность климата рассматриваемой территории, легкие по механическому составу почвы, наличие склоновых земель и высокая рас-паханность определяют направление эрозионных процессов [ 1 ] .

На территории Красноярского края выделяются три зоны проявления эрозии (по административным районам): зона ветровой эрозии; зона водной эрозии; зона смешанной эрозии [ 2, 3 ] .

Цель исследования – проведение оценки эрозионной опасности от водной, ветровой эрозии почв территории хозяйства СЗАО «Легоста- евское», расположенного в Новоселовском районе Красноярского края.

Задачи исследования: 1) используя методические основы оценки эрозии и дефляции почв в условиях юга Красноярского края, определить потенциальный смыв от ливневых вод с учетом формы склона, уклона, рельефа, типа почвы [3–5]; 2) по результатам расчета потенциального смыва от ливневых вод с учетом класса эрозионной опасности, рассмотреть применение комплекса противоэрозионных мероприятий; 3) определить максимально возможные размеры оврагов, распространение и темпы развития в сочетании с физикогеографическими, геолого-морфологическими, инженерно-геологическими факторами; 4) определить дефляционную опасность земель; 5) по результатам оценки составить карту эрозионной опасности земель СЗАО «Легостаевское» Ново-селовского района Красноярского края.

Объекты, методы, результаты и их обсуждение. Объектом исследования являются земли, подверженные эрозионным процессам (от водной и ветровой эрозии почв). В ходе исследования были применены следующие методы: наблюдения, измерения, анализа, классификации эродированных земель.

Проблемой оценки эрозионных процессов на территории России занималось большое количество исследователей, в основном для европейской части страны, что отражено во многих статьях, монографиях, учебниках, методических указаниях [ 1, 2 ] . Для территории юга Красноярского края разработкой методических основ оценки эрозии и дефляции почв в 1999–2001 гг. занималась группа преподавателей Красноярского ГАУ во главе с профессором Д.А. Бураковым [3–5]. Методические основы могут применяться для определения эрозии почв от стока талых, ливневых (дождевых) вод; для определения дефляции почв.

Согласно физико-географическому районированию, СЗАО «Легостаевское» расположено в Чулымо-Енисейской котловине, слабооблесен-ной – лесостепной зоне. Территория относится к умерено прохладному агроклиматическому району с недостаточным увлажнением [6]. Почвы здесь представлены черноземами южными и обыкновенными, в большинстве высокоплодородными. В весенне-зимний и осенне-зимний периоды, когда почва наиболее обнажена, наблюдается наибольшее число дней с сильным ветром, в основном юго-западного направления. Небольшое количество осадков, сильные ветры и значительная распаханность территории способствуют развитию ветровой и водной эрозии, что характерно для зоны проявления смешенной эрозии [3–5].

На территории СЗАО «Легостаевское» ветровая эрозия почв проявляется ежегодно, разной интенсивности. В связи с равнинным рельефом местности водная эрозия проявляется слабее, чем ветровая. Толщина снегового покрова различна на рассматриваемой территории – от 15– 20 см. Основная часть распаханных земель СЗАО «Легостаевское» расположена на открытых равнинных пространствах, где снег сдувается в лога, овраги, накапливаясь там, и поля остаются открытыми. Плоскостная эрозия здесь проявляется в результате выпадения дождей, а не от таяния снежного покрова. На притеррасных участках, примыкающих к пойме реки Чулым, встречаются овраги небольших размеров, но с потенциалом дальнейшего развитии в связи с частичной задернованностью их бортов. Для оценки плоскостной эрозии от ливневых (дождевых) вод используется величина потенциального смыва (т/га в год), которая определяется с учетом почвенно-климатических условий, рельефа на полях, занятых чистым паром или зябью.

Для работы были использованы крупномасштабные топографические, почвенные карты. Расчеты потенциальной интенсивности смыва почв от ливневых вод проводились по контрольным линиям (участкам), которые были разбиты на 100-метровые отрезки. На территории хозяйства были выделены склоны, занятые пашней с уклоном более 2,5°, они более всего подвержены плоскостному смыву почвы, начиная от водоразделов до бровок балок, оврагов по линиям стока, определялась крутизна, уклон, форма, экспозиция склонов. На территории хозяйства было выделено 18 участков, наиболее подверженных эрозии почв от ливневых вод.

Расчет потенциального смыва земель от стока ливневых дождей (Э д ) ведется с использованием универсального уравнения Уйшмеера [ 5 ] , это уравнение для чистого пара и зяби имеет вид

Э д = Е д ∙ П ∙ Р , (1)

где Е д – эрозионный потенциал осадков; П – эродируемость (смываемость) почв, т/га; Р – эрозионный потенциал рельефа.

Е Д = 0,258 ∙ Е 30 – 0,149 , (2)

где Е 30 – эрозионный индекс осадков.

Влияние рельефа на потенциальный смыв земель описывается уравнением

P =

’ L "

. 22,13 .

( 0,065 + 0,045 i + 0,0065 i 2 ) Ф ,   (3)

где L – длина участка, т. е. расстояние от водораздела до места отложения наносов в метрах; i – уклон, % (значения i и L снимаются с топографической карты); m – параметр зависит от i-уклона на расчетном участке. Ф – показатель формы склона: для прямых склонов Ф = 1, для выпуклых Ф = 1,5, для вогнутых Ф = 0,5.

Эродируемость почв П – это количество эродируемой почвы, т/га, на единицу эрозионного потенциала осадков. Значения П определяются в зависимости от типа, гранулометрического состава почвы, содержания гумуса, степени смытости, материнской породы.

П =-0,0296∙ У + 0,3537 ∙ У +0,2233∙ У +0,1392 ,

где У=-0,19365∙ Г +0,042576∙ Ф м + 0,011187 ∙ Ф к ;

Г – содержание гумуса, %; Фм – содержание мелкого песка, %; Фк – содержание крупного песка, %.

Результаты оценки потенциального смыва почв от стока ливневых вод на примере трех участков приведены в таблице 1.

Необходимость проведения противоэрозион-ных мероприятий (ПЭМ) определяется с учетом класса эрозионной опасности [ 4 ] , путем сравнения потенциального смыва от ливневых вод ( Э д )

и допустимого смыва ( Д ), характеризующего величину естественного почвообразовательного процесса. Проведение противоэрозионных мероприятий (ПЭМ) требуется, если почвы смывается больше, чем восстанавливается.

Результаты необходимости проведения (ПЭМ) по расчетным участкам сведены в таблице 2. На всех рассматриваемых отрезках требуется проведение противоэрозионных мероприятий.

Таблица 1

Номер участка

Номер отрезка

I,%

L, м

Ф

Р

П, т/га

Е 30

Э д , т/га в год

I

1

8,0

200

0,5

1,26

0,8

16

16,1

2

5,7

87,5

0,5

0,53

0,8

16

6,8

3

8,5

175

0,5

1,26

0,8

16

16,1

4

5,7

175

0,5

0,46

0,8

16

5,9

5

4,2

350

0,5

0,55

0,8

16

5,3

II

1

2,7

325

1,5

0,77

0,6

16

7,4

2

5,0

250

1,0

1,53

0,8

16

19,6

3

7,0

250

1,0

2,30

0,8

16

29,5

II

1

10,0

250

1,0

3,96

1,0

16

63,4

2

4,0

125

1,0

0,38

0,6

16

3,7

Таблица 2

Номер участка

Номер отрезка

Д, т/га в год

Э д , т/га в год

Класс эрозионной опасности

Необходимость ПЭМ

1

1

2,5

16,1

3

+

2

2,5

6,8

2

+

3

2,5

16,1

3

+

4

2,5

5,9

2

+

5

2,5

5,3

2

+

2

1

2,5

7,4

2

+

2

2,5

19,6

3

+

3

2,5

29,5

4

+

3

1

2,0

63,4

5

+

2

2,5

3,7

2

+

Оценка потенциального смыва почв от стока ливневых вод

Определение классов эрозионной опасности и необходимость проведения комплекса противоэрозионных мероприятий

В СЗАО «Легостаевское» следующее распределение площадей, занятых той или иной культурой (в % от общей площади пашни): зерновые – 52 %; пропашные – 16; однолетние травы – 20; пар – 12 %. Чтобы проверить, насколько правильно спланированы севообороты в хозяйстве с учетом эрозионной опасности, необходимо определить комплексный коэффициент севооборотов к ) по методике [ 5 ] на расчетных участках по формуле

С к =

∑ ∙

где С i – коэффициент защитной роли культуры в севообороте: для зерновых он составляет 0,5, для однолетних – 0,05, для кукурузы – 0,6 и для пара – 1,0; F i – площадь, занимаемая культурой в севообороте.

Комплексный коэффициент для севооборотов ЗАО «Легостаевское» составил 0,47. Определим необходимость изменения составов севооборотов на расчетных участках с учетом эрозионной опасности от стока дождевых вод. Необходимость изменения выясняется путем сравнивания отношения Д с д , которое показывает максимально допустимое значение коэффициента защитной роли севооборота (С к ), позволяющего избежать эрозионной опасности. Если Д с д < С к , значит, такой состав севооборотов не удовлетворяет условиям защиты почвы от эрозии, и его нужно менять. При необходимости изменения состава севооборотов используются данные [ 5 ] . Для этого в приложении выбираются значения С к . Необходимость изменения состава севооборотов отражена в таблице 3.

Таблица 3

Изменение состава севооборотов с учетом эрозионной опасности

05 со Ф

I— О os'

1—

05 X

S-

О ZE

СЕ О

со 05

ci

сЕ О

со

05

о

ст

о

СК

X со Ф о

X ь-ф о

О 5 х о

8 ° ZE

Состав севооборотов

СК

X ф

^ о

X с со

о

се

2

со

05

О

2 о 1 1= d х О S х ь-

ф с[ ZE

05

1— +

X

ф со

+

с о

1=

m 05

I— ф

X 1— ф

о X d О

1

2

2,5

6,8

0,37

0,47

+

72

28

20

3.2

+

80

20

30

0,33

2,2

3

2,5

5,9

0,42

0,47

+

72

28

20

2,7

+

80

20

30

0,33

1,9

4

2,5

5,3

0,47

0,47

72

28

20

2,4

2

1

2,5

7,4

0,33

0,47

+

72

28

20

3,5

+

80

20

30

0,33

2,4

3

2

2,5

3,7

0,67

0,47

72

28

20

1,7

После проведения оценки эрозии почвы от ливневых вод, согласно методике [5], на примере трех участков, расположенных в СЗАО «Легостаевское», предлагается: для отрезков, на которых класс эрозионной опасности 3, 4, 5 (см. табл. 2), проведение агротехнических приемов обработки почвы, виды противоэрози-онных агротехнических приемов и значения коэффициентов защитной роли агротехники согласно методике; на отрезках, где потенциаль- ный смыв больше 6 т/га в год, изменить состав культур в севообороте, увеличить площадь однолетних трав, уменьшить площадь пропашных культур и пара (см. табл. 3); на остальных отрезках не менять состав севооборотов, защитной роли существующих достаточно, чтобы смыв почвы не проявлялся больше допустимых пределов.

Оценка потенциального роста оврагов. Распространение и темпы развития оврагов на водосборе определяются сочетанием физикогеографических, геолого-геоморфологических, инженерно-геологических факторов. Все эти факторы взаимоувязаны между собою, и изменение одного из них ведет к усилению или ослаблению донного размыва. Среди климатических факторов на эрозионный процесс непосредственно воздействуют только осадки. Сумма и активность их выпадения обуславливают энергию водных потоков и активность размыва.

На развитие линейной эрозии большое воздействие оказывают механический состав и рельеф склона. На территории СЗАО «Лего-стаевский» существует пять крупных оврагов, которые в процессе своего развития могут выйти на ценные земли, остальные овраги не угрожают ценным землям или облесены и не развиваются. Для предотвращения развития овражной эрозии необходимо знать максимальные размеры форм размыва, интенсивность линейной эрозии, стадию развития оврага.

На первом этапе выполняется раздельный расчет расходов дождевого паводка и весеннего половодья на редукционной основе для 1 % вероятности превышения по формуле [7, 8]

Q ••• = MF^F 0001- (7) ( F + 1)

где Q mаx, 1% – срочный максимальный расход воды 1 % обеспеченности, л/с (м3/с); M Э,1% – элементарный модуль максимального расхода 1 % обеспеченности, л/(с ∙ км2); F – площадь водосбора, км2; n – показатель степени редукции модуля максимального расхода при увеличении размеров водотока. Площадь водосбора – территория, включая толщу почвогрунтов, откуда происходит сток в водоток (река, ручей и т. д.).

Элементарный модуль максимального расхода дождевого паводка 1 % вероятности превышения определяется по уравнению

М э , % =10 ∙ Х Б , , % , (8)

где Х Б,1% – наибольшие суточные осадки 1% обеспеченности, мм, приведенные к средней высоте водосбора (склона) Н Б , м.

Величина Х В,1% рассчитывается по формуле

-H

X b 1% = TJ1 + Гх '( ",. ~)], (9)

где Н мст – высота метеостанции, м; Н скл высота склона; y — градиент увеличения количества осадков на каждый 1 мм исходных расчетных осадков на метеостанции и на каждые 100 м увеличения высоты, принят равным 0,1 мм/100 м. Показатель степени редукции модуля максимального расхода воды дождевого паводка (n Д ) дифференцируется по размеру водосборной площади водотока F. От расхода 1 % обеспеченности переходим к расходу 10 % обеспеченности, при использовании Х р% - переходных коэффициентов (0,404 – для дождевого паводка, 0,507 – для весеннего половодья).

На втором этапе вычисляются морфометрические характеристики овражной эрозии [3]. Максимально возможная длина оврага (lmax) определяется по формуле l max

0,3 HQ.o"°" v 267 n 2 A 067

где H – глубина местного базиса эрозии, м; Q – расход ливневого и талого стока 10 % обеспеченности, м3/с; v – размывающая скорость для грунтов склона; n – коэффициент шероховатости (0,03 – для рыхлых и 0,08 для твердых пород); А – коэффициент формы потока в русле (10 – для рыхлых и 5 для твердых пород: известняки, мергель). Глубина местного базиса эрозии определяется как превышение самой высокой точки на водосборе над самой минимальной точкой.

Максимально возможная глубина оврага h max определяется по формуле

ℎ =0,85× Н - ∙ , (11)

где L 1 – расстояние от водораздела до бровки, м; H - глубина местного базиса эрозии, м; в -угол наклона склона от водораздела к бровке оврага.

Расстояние от водораздела до бровки, расстояние от линии водораздела (т. е. линии, ограничивающей водосбор) – до верхней границы оврага.

Максимально возможный объем оврага ( W max ) рассчитывается как сумма геометрических фигур

=0,52∙     ∙ℎ ,

Площадь, которую будет иметь овраг в случае своего максимального развития ( F max ), равна

= 1,35∙      ,    +1,76∙ℎ     ∙       .

L        'Wmax/                 -1

Определенная площадь водосбора каждого оврага равна: овраг № 1 F 1 – 47 км2; овраг № 2 F 2 – 47 км2; овраг № 3 F 3 – 36 км2; овраг № 4 F 4 – 8,7 км2; овраг № 5 F 5 – 50,2 км 2.

Максимально возможная длина : овраг № 1 L max = 8,6 км, его длина на сегодняшний момент составляет 1,4 км, отсюда следует, что овраг еще будет расти; овраг № 2 L max = 4,0 км, на сегодняшний момент длина составляет 0,87 км, овраг будет расти; овраг № 3 L max = 9,2 км, на сегодняшний момент длина оврага составляет 1,8 км, овраг будет расти; овраг № 4 L max = 3,3 км, на сегодняшний момент – 0,5 км, будет расти; овраг № 5 L max = 5,5 км, на сегодняшний момент длина составляет 1,7 км, будет расти.

На склонах балок для снижения смыва почв до допустимых размеров, предупреждения процессов размыва, оврагообразования и регулирования стока следует предусматривать расчленение этих склонов постоянными линейными рубежами: про-тивоэрозионными сооружениями; устойчивым травяным покровом; защитными лесными насаждениями, а также использовать противоэрозион-ные агротехнические приемы на доступных для механизированных работ участках.

П д = 24,7 + 0,9 а -0,3∙  -0,4∙  +10,1∙ Г ,   ,

где П д – показатель относительной противодеф-ляционной устойчивости почвы; а – содержание ила (≤ 0,001 мм), %; b – мелкого песка (0,05– 0,25 мм), %; d – крупного песка (> 0,25 мм), %; Г – гумуса, %.

Показатель противодефляционной устойчивости почв в СЗАО «Легостаевское» колеблется в пределах Пд = 74–105,5 %.

Чем больше П Д , тем более устойчивы почвы к развеванию ветрами.

В зависимости от П Д были определены пороговые скорости ветра ( u 0 ), при котором начинается их развевание [3, 4]. Для обыкновенных и выщелоченных черноземов u 0 = 9 м/с.

Пороговая скорость ветра используется для расчета дефляционного потенциала ветра ( В i ). Дефляционный потенциал ветра рассчитывается для разных пороговых скоростей u 0i (8, 10, 12 и

На территории СЗАО «Легостаевский» в соответствии с [3] предлагается для оврагов № 1, 2, 3, 5 (так как их площадь водосбора больше 20 км2, но меньше или равна 50 км2) применение гидротехнических сооружений: системы водозадерживающих валов, вало-плотин и водоотводящих валов. Для оврага № 4 водозадерживающие валы в сочетании с выполаживанием откосов с частичной засыпкой – до образования тракторо-проходимой ложбины.

Оценка потенциальной дефляции. Для расчета потенциальной дефляции на территории СЗАО «Легостаевское» было выделено 7 участков (контуров).

Распространение и интенсивность дефляции зависят от двух главных факторов – ветрового режима и дефлируемости почвы. Дефлируе-мость почвы зависит от ее физических свойств, прежде всего от гранулометрического состава [4]. Для определения относительной противо-дефляционной устойчивости почв ( Пд ) по каждому контуру были взяты характеристики почв.

Для определения относительной характеристики противодефляционной устойчивости почв ( П д ) Г.А. Ларионов [1], по данным стандартных анализов, предложил зависимость

  • 14 м/с) по зависимости, имеющей следующий вид:

n

Bt = 0,001У( u37 f------ ...   ,   . ), (15)

i      ,                 j-t J      .nS(1- uj / u о i )^

1          1 + 10

где В i – дефляционный потенциал для i-й пороговой скорости; и j средняя скорость ветра j-й скоростной градации, м/с; f j – повторяемость ветров j-й скоростной градации от общего числа наблюдений в месяце, %.

С учетом рассмотренных оценок интенсивность дефляции определяется по формуле

C z

D = 1 + 10 4 44- 0’ 4 z ,          (16)

где D – интенсивность дефляции, т/га в год; С = 4,54 коэффициент пропорциональности;

z – коэффициент, определяемый с учетом дефляционного потенциала ветра, поправочного коэффициента на рельеф контура, почвозащитного коэффициента растительности основных полевых культур согласно [4, 5].

Расчеты проводились в трех вариантах: 1) по данным о гранулометрическом составе и со- держании гумуса в почвах (табл. 4); 2) с учетом вероятного снижения пороговой скорости ветра на 1 м/с из-за возможного истощения почв за период, прошедший с момента почвенной съемки (табл. 5); 3) с учетом изменения пороговой скорости ветра на 2 м/с из-за истощения почв (табл. 6).

Таблица 4

Результаты оценки дефляции почв по данным о гранулометрическом составе и содержании гумуса в почвах

Расчетные характеристики контуров

Дефляция D, т/га в год

Характеристика контуров

N k

B i

m

K v

Почвы, %

u 0 , м/с

Уклон, %

Экспозиция склона

a

b

d

г

1

6,3

1,580

1,00

0,34

18,0

53,1

0,7

9

13

До 1

2

2,3

1,545

1,00

0,00

20,5

10,6

0,6

9

14

До 1

3

3,1

1,545

1,00

0,01

17,5

51,2

0,6

11,7

14

До 2

св

4

8,4

1,580

1,00

2,90

16,3

50,2

0,5

9

13

До 3

св

5

3,1

1,545

1,00

0,01

16,2

19,6

0,7

9

14

До 3

св

6

6,3

1,580

1,00

0,34

20,0

54,7

0,5

9

13

До 1

7

3,1

1,545

1,00

0,01

20,5

10,6

0,6

9

14

До 3

св

Здесь и далее: N k – номер контура; u 0 – пороговая скорость ветра, м/с; K v – коэффициент, учитывающий рельеф; B i – дефляционный потенциал; m – коэффициент; Д – интенсивность дефляции, т/га в год.

По результатам расчетов интенсивность дефляции значительно больше с учетом изменения пороговой скорости ветра на 2 м/с в отличие от остальных вариантов (см. табл. 6). Наименьший коэффициент интенсивности дефляции почв получается по данным расчета о гранулометрическом составе и содержании гумуса в почвах (см. табл. 4). Если сравнивать коэффициенты интенсивности дефляции представленных контуров во всех трех вариантах расчета: чем больше величина дефляционного потенциала ветра, меньше в почве гумуса, крупного песка, тем больше потенциальная дефляция.

Таблица 5

Расчетные характеристики контуров

Дефляция D, т/га в год

Характеристика контуров

N k

B i

m

K v

Почвы, %

u 0 , м/с

Уклон, %

Экспозиция склона

a

b

d

г

1

10,3

1,609

1,00

15,14

18,0

53,1

0,7

9

12

До 1

2

6,3

1,580

1,00

0,34

20,5

10,6

0,6

9

13

До 1

3

8,4

1,580

1,00

2,87

17,5

51,2

0,6

11,7

13

До 2

св

4

13,7

1,609

1,00

56,99

16,3

50,2

0,5

9

12

До 3

св

5

8,4

1,580

1,00

2,87

16,2

19,6

0,7

9

13

До 3

св

6

10,3

1,609

1,00

15,14

20,0

54,7

0,5

9

12

До 1

7

8,4

1,580

1,00

2,87

20,5

10,6

0,6

9

13

До 3

св

Таблица 6

Расчетные характеристики контуров

Дефляция D, т/га в год

Характеристика контуров

N k

B i

m

K v

Почвы, %

u 0 м/с

Уклон, %

Экспозиция склона

a

b

d

г

1

11,7

1,637

1,00

33,72

18,0

53,1

0,7

9

11

До 1

2

10,3

1,609

1,00

15,14

20,5

10,6

0,6

9

12

До 1

3

13,7

1,609

1,00

56,99

17,5

51,2

0,6

11,7

12

До 2

св

4

15,6

1,637

1,00

69,51

16,3

50,2

0,5

9

11

До 3

св

5

13,7

1,609

1,00

56,99

16,2

19,6

0,7

9

12

До 3

св

6

11,7

1,637

1,00

33,72

20,0

54,7

0,5

9

11

До 1

7

13,7

1,609

1,00

56,99

20,5

10,6

0,6

9

12

До 3

св

Результаты оценки дефляции почв с учетом вероятного снижения пороговой скорости ветра на 1 м/с

Результаты оценки дефляции почв с учетом изменения пороговой скорости ветра на 2 м/с

Карта эрозионной опасности земель. По результатам расчета потенциального смыва от стока ливневых вод и дефляционно опасных ветров, по категориям эрозионно-опасных земель и видам эрозионных процессов составлена карта эрозионной опасности земель.

Заключение . В ходе исследования проведена оценка водной, ветровой эрозии почв территории хозяйства СЗАО «Легостаевское», расположенного в Новоселовском районе Красноярского края. При использовании крупномасштабных топографических, почвенных карт были выделены склоны, подверженные эрозионным процессам от ливневых дождей, на которых определена величина потенциального смыва на каждом стометровом отрезке с учетом формы склона, уклона, рельефа, типа почвы. Рассмотрено применение комплекса противоэрозионных мероприятий по результатам расчета потенциального смыва от ливневых вод. Проведена оценка потенциального роста оврагов, определены максимальные размеры форм размыва, интенсивность линейной эрозии, стадия развития оврага. Проведена оценка потенциальной дефляции почв, распространение, интенсивность дефляции на территории хозяйства в зависимости от ветрового режима и дефлируемо-сти почвы. По результатам оценки составлена карта эрозионной опасности земель СЗАО «Ле-гостаевское» Новоселовского района Красноярского края.

На территории СЗАО «Легостаевский» выделены следующие категории земель по видам эрозионных процессов.

  • 1.    Только дефляционно опасные – 82 %:

  • а)    сильно дефлируемые – занимают 22 % всей площади пашни, с экспозицией склона юг и юго-запад, они проходят по югу и несколькими массивами по центру хозяйства;

  • б)    среднедефлируемые – занимают 17 % всей площади пашни, склоны чаще северо-западной, восточной, юго-восточной экспозиции и открытых прямых участков (пойменные), они расположены на северо-западе хозяйства обширным массивом и отдельными небольшими участками по всей территории землепользования;

  • в)    слабодефлируемые – занимают 43 % всей площади пашни, склоны северо-восточной, северной экспозиции, они менее всего подвержены дефляции, потому что среднегодовое направление ветра юга и юго-западное, эти склоны расположены на северо-востоке СЗАО «Ле-гостаевский» одним обширным массивом, расчлененным пастбищными участками.

  • 2.    Смешанная эрозия (водная и ветровая), таких земель в хозяйстве 18 % от общей площади пашни:

  • а)    преимущественно водная (ветровая, в слабой степени себя не проявляет по сравнению с водной) – 2 % от пашни, эти эрозионно опасные участки расположены отдельными компактными массивами в северо-восточной части землепользования, а также в северозападной и центральной части хозяйства;

  • б)    водная и ветровая в равной степени, она составляет 6 % от всей площади пашни, эти эрозионно опасные участки выделяются в западной части хозяйства и небольшими массивами на юго-западе;

  • в)    преимущественно ветровая, со слабой степенью водной, это наиболее обширный вид смешанной эрозии (10 %), этот вид эрозии получил свое распространение небольшими участками на юго-западе и большей частью на северо-востоке СЗАО «Легостаевский».

Список литературы Комплексная оценка эрозионной опасности земель СЗАО «Легостаевское»

  • Ларионов Г.А. Эрозия и дефляция почв: основные закономерности и количественная оценка. М.: Изд-во МГУ, 1993. 198 с.
  • Баженова О.И. Пространственно-временной анализ динамически эрозионных процессов на юге Восточной Сибири. Новосибирск: Наука, 1997. 206 с.
  • EDN: RZIWEX
  • Бураков Д.А., Маркова Е.Э., Иванова О.И. Разработка методических основ оценки эрозии и дефляции почв в условиях юга Красноярского края: отчет о научно-исследовательской работе / Краснояр. гос. аграр. ун-т. Красноярск, 2000. 104 с.
  • Бураков Д.А., Виноградова Л.И., Еремина М.М. Количественная оценка дефляционной опасности в земледельческой зоне Красноярского края // Тр. СибНИГМИ. СПб.: Гидрометеоиздат, 2003. Вып. 104. С. 107-122.
  • Бураков Д.А., Маркова Е.Э. Эрозия почв: учеб. пособие / Краснояр. гос. аграр. ун-т. Красноярск, 2009. 160 с.
  • EDN: QLAXVD
  • Калашников Е.Н. Физико-географическое районирование Красноярского края и Республики Хакасии (масштаб 1: 7500000) // Атлас Красноярского края и Республики Хакасии. Новосибирск: Роскартография, 1994. 43 с.
  • Гидрологические основы водопользования ресурсами малых рек бассейнов Верхнего Енисея, Верхнего Чулыма и Нижней Ангары / А.В. Петенков [и др.]. Красноярск: СибНИИГиМ, 1990. 208 с.
  • Ivanova O.I., Vinogradova L.I., Kozhukhovsky A.V. Features of water balance in the Selenga and Onon river basin sduring the formation of rain floods / IOP Conference Series: Earth and Environmental Science, Smolensk, Russian Federation. 2021. Volume 723, № 4. С. 042004.
Еще
Статья научная