Конструкции с применением монолитного пенобетона в несъемной опалубке

Автор: Рыбаков В.А., Дружинина С.Н., Усанова К.Ю.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (109), 2023 года.

Бесплатный доступ

Объектом исследования являются конструкции с применением монолитного пенобетона в несъемной опалубке. Целью работы является систематизация знаний о существующих конструкциях с применением пенобетона в несъемной опалубке, областях их применения, преимуществах и недостатках.

Монолитный пенобетон, несъемная опалубка, пенобетонные конструкции

Короткий адрес: https://sciup.org/143182708

IDR: 143182708   |   DOI: 10.4123/CUBS.109.15

Список литературы Конструкции с применением монолитного пенобетона в несъемной опалубке

  • Mohd Nawi, M.N., Baluch, N. and Bahauddin, A.Y. (2014) Impact of Fragmentation Issue in Construction Industry: An Overview. MATEC Web of Conferences, EDP Sciences, 15. https://doi.org/10.1051/MATECCONF/20141501009.
  • Gadde, L.E. and Dubois, A. (2010) Partnering in the Construction Industry—Problems and Opportunities. Journal of Purchasing and Supply Management, Pergamon, 16, 254–263. https://doi.org/10.1016/J.PURSUP.2010.09.002.
  • Ringen, K., Seegal, J. and Englund, A. (2003) Safety and Health in the Construction Industry. Annual Reviews 4139 El Camino Way, P.O. Box 10139, Palo Alto, CA 94303-0139, USA , 16, 165–188. https://doi.org/10.1146/ANNUREV.PU.16.050195.001121.
  • Gvarishvili A.A., Sedova A.A. and Shoshitaishvili N.G. (2020) Fixed Formwork and Its Application. Innovatsii i investitsii, 253–256 https://elibrary.ru/item.asp?id=42764981
  • Bedarf, P., Calvo-Barentin, C., Dinorah, ·, Schulte, M., Senol, A., Jeoffroy, E. and Dillenburger, · Benjamin. (2023) Mineral Composites: Stay-in-Place Formwork for Concrete Using Foam 3D Printing. Architecture, Structures and Construction 2023 3:2, Springer, 3, 251–262. https://doi.org/10.1007/S44150-023-00084-X.
  • Jipa, A. and Dillenburger, B. (2022) 3D Printed Formwork for Concrete: State-of-the-Art, Opportunities, Challenges, and Applications. 3D Printing and Additive Manufacturing, Mary Ann Liebert, Inc., 9, 84. https://doi.org/10.1089/3DP.2021.0024.
  • Kuzielova, E., Pach, L. and Palou, M. (2016) Effect of Activated Foaming Agent on the Foam Concrete Properties. Construction and Building Materials, Elsevier, 125, 998–1004. https://doi.org/10.1016/J.CONBUILDMAT.2016.08.122.
  • Montayev S.A., Shakeshev B.T., Ryskaliyev M.Z., Adilova N.B. and Narikov K.A. (2017) Collagen Agent Technology for Foam Concrete Production. ARPN journal of engineering and applied sciences, 12, 1674–1678. https://elibrary.ru/item.asp?id=29685385
  • Baliasnikov V. V. (2003) Penobeton Na Modifitsirovannykh Sinteticheskikh Penoobrazovateliakh. Diss. https://elibrary.ru/item.asp?id=16004915
  • Huang, Z., Zhang, T. and Wen, Z. (2015) Proportioning and Characterization of Portland Cement-Based Ultra-Lightweight Foam Concretes. Construction and Building Materials, Elsevier, 79, 390–396. https://doi.org/10.1016/J.CONBUILDMAT.2015.01.051.
  • Sayadi, A.A., Tapia, J. V., Neitzert, T.R. and Clifton, G.C. (2016) Effects of Expanded Polystyrene (EPS) Particles on Fire Resistance, Thermal Conductivity and Compressive Strength of Foamed Concrete. Construction and Building Materials, Elsevier, 112, 716–724. https://doi.org/10.1016/J.CONBUILDMAT.2016.02.218.
  • Othuman, M.A. and Wang, Y.C. (2011) Elevated-Temperature Thermal Properties of Lightweight Foamed Concrete. Construction and Building Materials, Elsevier, 25, 705–716. https://doi.org/10.1016/J.CONBUILDMAT.2010.07.016.
  • Tan, X., Chen, W., Wang, J., Yang, D., Qi, X., Ma, Y., Wang, X., Ma, S. and Li, C. (2017) Influence of High Temperature on the Residual Physical and Mechanical Properties of Foamed Concrete. Construction and Building Materials, Elsevier, 135, 203–211. https://doi.org/10.1016/J.CONBUILDMAT.2016.12.223.
  • Kilincarslan, S., Davraz, M. and Akca, M. (2018) The Effect of Pumice as Aggregate on the Mechanical and Thermal Properties of Foam Concrete. Arabian Journal of Geosciences, Springer Verlag, 11, 1–6. https://doi.org/10.1007/S12517-018-3627-Y/METRICS.
  • Slavcheva G. S. and Chernyshev E. M. (2016) Algoritm Konstruirovaniya Struktury Tsementnykh Penobetonov Po Kompleksu Zadavaemykh Svoystv. Stroitel’nye materialy, 58–64. https://elibrary.ru/item.asp?id=26719172
  • Bugajchuk, V.A. and Baranova, A.A. (2020) Comparative Analysis of Water Absorption and Closed Porosity of Cellular Concrete. Sovremennye tekhnologii i nauchno-tekhnicheskii progress, 1, 153. https://elibrary.ru/item.asp?id=43019203
  • Hamzah, W.M. (2019) Construction Working Using Foam Concretes the Study of Lightweight Concrete. International Journal of Civil Engineering and Technology, 10, 25–34. https://iaeme.com/Home/article_id/IJCIET_10_06_003
  • Amran, Y.H.M., Farzadnia, N. and Ali, A.A.A. (2015) Properties and Applications of Foamed Concrete; A Review. Construction and Building Materials, Elsevier Ltd, 101, 990–1005. https://doi.org/10.1016/J.CONBUILDMAT.2015.10.112.
  • Vasil’ev V.D. (2005) Monolitnyi Penobeton Po Tekhnologii «SOVBI». Stroitel’nye materialy, 39–40. https://elibrary.ru/item.asp?id=9469590
  • Jones, M.R., Ozlutas, K. and Zheng, L. (2017) High-Volume, Ultra-Low-Density Fly Ash Foamed Concrete. Magazine of Concrete Research, Thomas Telford Ltd, 69, 1146–1156. https://doi.org/10.1680/JMACR.17.00063.
  • Nambiar, E.K.K. and Ramamurthy, K. (2006) Influence of Filler Type on the Properties of Foam Concrete. Cement and Concrete Composites, Elsevier, 28, 475–480. https://doi.org/10.1016/J.CEMCONCOMP.2005.12.001.
  • Kazaryan, R.R. and Khvan, V.A. (2018) Technological Processes for Manufacturing Cellular Concrete Products for Construction. Materials Science Forum, Trans Tech Publications Ltd, 931, 634–639. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.931.634.
  • Shi, M., Yin, G., Wei, P., -, al and Bartenjeva, E. (2020) The Effect of Mineral Additives on Foam Concrete Porosity. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 962, 022023. https://doi.org/10.1088/1757-899X/962/2/022023.
  • Mashkin, N. and Bartenjeva, E. (2018) Research of Structuring Processes of Non-Autoclave Foam Concrete with Introduction of Mineral Additives. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 451, 012018. https://doi.org/10.1088/1757-899X/451/1/012018.
  • Bartenjeva, E. (2018) The Increase of Heat-Insulating Properties of Foam Concrete by Introducing Mineral Additives. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 456, 012036. https://doi.org/10.1088/1757-899X/456/1/012036.
  • Yang, Z.H., Guo, P.L., Chen, X. and Jiang, W. (2019) Heat and Humidity Performance of EPS and Rock Wool Board External Thermal Insulation System. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 592, 012008. https://doi.org/10.1088/1757-899X/592/1/012008.
  • Fu, Y., Wang, X., Wang, L. and Li, Y. (2020) Foam Concrete: A State-of-the-Art and State-of-the-Practice Review. Advances in Materials Science and Engineering, Hindawi Limited, 2020. https://doi.org/10.1155/2020/6153602.
  • Husna, N., Syed, A., Farhan, M., Mubarak, A., Wahab, A. and Romanova, I. (2018) The Selecting of Building Insulation Material by the Analytic Hierarchy Process. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 365, 032016. https://doi.org/10.1088/1757-899X/365/3/032016.
  • Zimele, Z., Sinka, M., Bajare, D. and Jakovics, A. (2019) Life Cycle Assessment for Masonry Exterior Wall Assemblies Made of Traditional Building Materials. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 660, 012042. https://doi.org/10.1088/1757-899X/660/1/012042.
  • Krival’tsevich T.V. and Gurova E.V. (2016) Sravnenie Neavtoklavnogo Penobetona s Drugimi Teploizoliatsionnymi Materialami. Arkhitektura, stroitel’stvo, transport, 508–512. https://elibrary.ru/item.asp?id=25530493
  • Dzhamalov SH. G. and Otsokov K. A. (2016) Sposoby Povysheniia Effektivnosti Penobetona. Vestnik dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki, 167–174. https://elibrary.ru/item.asp?id=27438317
  • Fediuk, R., Amran, M., Vatin, N., Vasilev, Y., Lesovik, V. and Ozbakkaloglu, T. (2021) Acoustic Properties of Innovative Concretes: A Review. Materials 2021, Vol. 14, Page 398, Multidisciplinary Digital Publishing Institute, 14, 398. https://doi.org/10.3390/MA14020398.
  • Mechtcherine, V., Markin, V., Will, F., Nather, M., Otto, J., Krause, M., Nerella, V.N., and Schrofl, C. (2019) Production of Monolithic, Load-Bearing, Heat-Insulating Wall Structures by Additive Manufacturing with Foam Concrete. Bauingenieur, 94, 405–415. https://scholar.google.com/scholar_lookup
  • Sherbin, S.A. and Gorbach, P.S. (2020) Foam Concrete Production with Addition of Microsilica. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 880, 012021. https://doi.org/10.1088/1757-899X/880/1/012021.
  • Lesovik, V., Voronov, V., Glagolev, E., Fediuk, R., Alaskhanov, A., Amran, Y.H.M., Murali, G. and Baranov, A. (2020) Improving the Behaviors of Foam Concrete through the Use of Composite Binder. Journal of Building Engineering, Elsevier, 31, 101414. https://doi.org/10.1016/J.JOBE.2020.101414.
  • Ivashchenko IU. G., Bagapova D. IU. and Strakhov A. V. (2017) Konstruktsionno-Teploizoliatsionnyi Penobeton, Modifitsirovannyi Voloknistym Napolnitelem. Inzhenernyi vestnik Dona, 4, 157. https://elibrary.ru/item.asp?id=32731268
  • Eliseeva N.N. (2010) Neavtoklavnyi Penobeton Na Osnove Stabilizatora Kolloidnoi Prirody. Izvestiia peterburgskogo universiteta putei soobshcheniia, 226–238. https://elibrary.ru/item.asp?id=15548722
  • Akimov, L., Ilenko, N., Mizharev, R., Cherkashin, A., Vatin, N., and Chumadova, L. (2016) Composite Concrete Modifier CM 02-10 and Its Impact on the Strength Characteristics of Concrete. Matec web of conferences, 53, 01022. https://elibrary.ru/item.asp?id=26307183
  • Kudyakov, A.I., Kopanitsa, N.O., Prishchepa, I.A., and Shan’gin, S.N. (2013) Constructional and Heat-Insulating Foam Concretes with Thermally-Modified Peat Additive. Vestnik of Tomsk State University of Architecture and Building, 172–177. https://elibrary.ru/item.asp?id=18866791
  • Lesovik, V.S., Glagolev, E.S., Voronov, V.V., Kh, Z.L., Fediuk, R.S., Baranov, A.V., and Svintsov, A.P. (2020) Durability Behaviors of Foam Concrete Made of Binder Composites. Magazine of Civil Engineering, 100, 10003. https://elibrary.ru/item.asp?id=44591761
  • Deepak N., Thiagu H. and Manivel S. (2019) Study on Strength of Metakaolin Based Foamed Concrete under Different Elevated Temperature. ARPN J. Eng. Appl. Sci, 14, 2980–2986.https://1library.net/document/qmwxv3wz-study-strength-metakaolin-foamed-concrete-different-elevated-temperature.html
  • Benazzouk, A., Douzane, O., Mezreb, K. and Quéneudec, M. (2006) Physico-Mechanical Properties of Aerated Cement Composites Containing Shredded Rubber Waste. Cement and Concrete Composites, Elsevier, 28, 650–657. https://doi.org/10.1016/J.CEMCONCOMP.2006.05.006.
  • Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O. and Mills, J.E. (2020) Influence of Rubber Particles on the Properties of Foam Concrete. Journal of Building Engineering, Elsevier, 30, 101217. https://doi.org/10.1016/J.JOBE.2020.101217.
  • Koksal, F., Sahin, Y. and Gencel, O. (2020) Influence of Expanded Vermiculite Powder and Silica Fume on Properties of Foam Concretes. Construction and Building Materials, Elsevier, 257, 119547. https://doi.org/10.1016/J.CONBUILDMAT.2020.119547.
  • Oren, O.H., Gholampour, A., Gencel, O. and Ozbakkaloglu, T. (2020) Physical and Mechanical Properties of Foam Concretes Containing Granulated Blast Furnace Slag as Fine Aggregate. Construction and Building Materials, Elsevier, 238, 117774. https://doi.org/10.1016/J.CONBUILDMAT.2019.117774.
  • Slavcheva G. S., Chernyshov E. M. and Novikov M. V. (2017) Teploeffektivnye Penobetony Novogo Pokoleniia Dlia Maloetazhnogo Stroitel’stva. Stroitel’nye materialy, https://elibrary.ru/item.asp?id=29827201
  • Seleznev I. G. (1995) Penobeton Dlia Monolitnogo Domostroeniia. Diss., 1–197. https://elibrary.ru/item.asp?id=15961836
  • Udachkin V.I. (2000) Malousadochnyi Neavtoklavnyi Beton Dlia Sbornogo i Monolitnogo Stroitel’stva. Diss. https://elibrary.ru/item.asp?id=15961836
  • Bel’kova N. A. and Ivashchenko E. I. (2022) Fibroarmirovannye Penobetony Neavtoklavnogo Tverdeniia Na Osnove Bazal’tovoi i Poliamidnoi Fibr: Osnovnye Kharakteristiki. Vestnik Inzhenernoi shkoly Dal’nevostochnogo federal’nogo universiteta, 2, 97–104. https://elibrary.ru/item.asp?id=49232634
  • Kotova K. S. (2019) Vliianie Kharakteristik Makroporistoi Struktury Penobetona Na Parametry Ego Stsepleniia s Armaturoi. Vestnik Inzhenernoi shkoly DVFU, 4, 144–154. https://elibrary.ru/item.asp?id=41535588
  • Amran, Y.H.M., Farzadnia, N. and Ali, A.A.A. (2015) Properties and Applications of Foamed Concrete; a Review. Construction and Building Materials, Elsevier, 101, 990–1005. https://doi.org/10.1016/J.CONBUILDMAT.2015.10.112.
  • Mestnikov A. E. and Rozhin V. N. (2017) Neavtoklavnyi Penobeton Na Mekhanoaktivirovannykh Sukhikh Smesiakh Dlia Stroitel’stva v Usloviiakh Arktiki. Fundamental’nye osnovy stroitel’nogo materialovedeniia, 1037–1046. https://elibrary.ru/item.asp?id=36305922
  • Wagh, C.D., Indu Siva Ranjani, G. and Kamisetty, A. (2021) Thermal Properties of Foamed Concrete: A Review. RILEM Bookseries, Springer Science and Business Media B.V., 29, 113–137. https://doi.org/10.1007/978-3-030-51485-3_9/COVER.
  • Steshenko, A.B. and Kudyakov, A.I. (2018) Cement Based Foam Concrete with Aluminosilicate Microspheres for Monolithic Construction. Magazine of Civil Engineering, St-Petersburg State Polytechnical University, 84, 86–96. https://doi.org/10.18720/MCE.84.9.
  • Steshenko A. B. and AI K. (2015) Rannee Strukturoobrazovanie Penobetonnoy Smesi s Modifitsiruyuschey Dobavkoy. Magazine of Civil Engineering, 54. https://elibrary.ru/item.asp?id=23139926
  • Mashkin N. A., Kudiakov A. I. and Barten’eva E. A. (2018) Neavtoklavnyi Penobeton, Dispersno-Armirovannyi Mineral’nymi i Voloknistymi Dobavkami. News of higher educational institutions, 58–68. https://elibrary.ru/item.asp?id=36685110
  • Luo, D., Zou, X. and Kiyanets, A. V. Energy Efficient Wall Design with Stay-in-Place Formwork You May Also like Analysis of GMT Composite Material-Based Building Formwork Energy Efficient Wall Design with Stay-in-Place Formwork. https://doi.org/10.1088/1757-899X/962/2/022079.
  • Li, J., Chen, Z., Chen, W. and Xu, Z. (2020) Seismic Performance of Pre-Cast Self-Insulation Shear Walls Made by a New Type of Foam Concrete with High Strength and Low Thermal Conductivity. Structures, Elsevier, 24, 124–136. https://doi.org/10.1016/J.ISTRUC.2020.01.001.
  • Prabha, P., Palani, G.S., Lakshmanan, N. and Senthil, R. (2018) Flexural Behaviour of Steel-Foam Concrete Composite Light-Weight Panels. KSCE Journal of Civil Engineering, Springer Verlag, 22, 3534–3545. https://doi.org/10.1007/S12205-018-0827-7/METRICS.
  • Kostyuk, A. and Kovtunenko, D. (2016) An Experimental Research of the Combined Joints of Wall Panels from the Natural Hardening Foam Concrete. Tehnički glasnik, Sveučilište Sjever, 10, 124–127. https://hrcak.srce.hr/171833
  • Rybakov, V.A. (2020) Condition Load Effect Factor of Profile Steel in Lightweight Steel Concrete Structures; 2020; Construction of Unique Buildings and Structures. 89, 8907. https://doi.org/10.18720/CUBS.89.7.
  • Rybakov, V.A., Kozinetc, K.G., Vatin, N.I., Velichkin, V.Z. and Korsun, V.I. (2018) Lightweight Steel Concrete Structures Technology with Foam Fiber-Cement Sheets. Magazine of Civil Engineering, St-Petersburg State Polytechnical University, 82, 103–111. https://doi.org/10.18720/MCE.82.10.
  • Gerasimov D. V., SHin L. A. and Rybakov V. A. (2020) Sravnitel’nyi Analiz Tekhniko-Ekonomicheskikh Pokazatelei Karkasno-Obshivnykh i Legkikh Stalebetonnykh Stenovykh Panelei. Regional’nye Aspekty Razvitiia Nauki i Obrazovaniia v Oblasti Arkhitektury, Stroitel’stva, Zemleustroistva i Kadastrov v Nachale III Tysiacheletiia, 184–288. https://elibrary.ru/item.asp?id=44864579
  • Rybakov V. A. (2019) Teplotekhnicheskie i Mekhanicheskie Svoistva Legkikh Stalebetonnykh Konstruktsii (LSBK). Effektivnye Konstruktsii, Materialy i Tekhnologii v Stroitel’stve., 107–115. https://elibrary.ru/item.asp?id=42311333
  • Nouruzi M. Sh. and Al’-KHasnavi IA. S. G. (2017) Armirovanie Perekrytiia Iz Legkikh Stalnykh Tonkostennykh Konstruktsii s Zapolneniem Iacheistym Betonom. Nauka i Innovatsii v Stroitel’stve, 89–94. https://elibrary.ru/item.asp?id=29881579
  • Rybakov, V., Seliverstov, A., Usanova, K., Rayimova, I., Rybakov, V., Seliverstov, A., Usanova, K. and Rayimova, I. (2021) Combustibility of Lightweight Foam Concrete Based on Natural Protein Foaming Agent. E3SWC, EDP Sciences, 264, 05001. https://doi.org/10.1051/E3SCONF/202126405001.
  • Verbitskaia E. V. (2016) Konstruktivnoe Reshenie i Dostoinstva Fasadnoi Sistemy Iz Penobetona i Metallicheskogo Profilirovannogo Lista. Polzunovskii al’manakh, 52–55. https://elibrary.ru/item.asp?id=28091543
  • Lundyshev I. A. (2013) Primenenie Dereviannogo Karkasa v Maloetazhnom Domostroenii s Utepleniem Monolitnym Penobetonom. ZHilishchnoe stroitel’stvo, 28–31. https://elibrary.ru/item.asp?id=20276906
  • Rakova, A. V. (2021) Ograzhdaiushchie Konstruktsii Iz Penobetona.Sposoby Vozvedeniia Iz Penobetona. VI Mezhdunarodnyi Studencheskii Stroitel’nyi Forum, 93–97. https://elibrary.ru/item.asp?id=48227624
  • Vytchikov Yu.S., Saparev M.Ye. and Golikov V.A. (2018) The Use of Monolithic Foam Concrete in Enclosing Structures of Buildings and Structures with Variable Thermal Conditions. Urban Construction and Architecture, 8, 10–14. https://doi.org/10.17673/ Vestnik.2018.04.2.
  • Liu, D., Fu, F. and Liu, W. (2021) Structural Behavior of Composite Floor System Using Cold-Formed Thin-Walled C Steel Channel Embedded Foam Concrete. Applied Sciences 2021, Vol. 11, Page 9888, Multidisciplinary Digital Publishing Institute, 11, 9888. https://doi.org/10.3390/APP11219888.
  • Shabbar, R.C., Noordin, N., Dawood, E.T. and Zailan Sulieman, M. (2010) Comparison between Ribbed Slab Structure Using Lightweight Foam Concrete and Solid Slab Structure Using Normal Concrete. Concrete Research Letters, 1. https://d1wqtxts1xzle7w
  • Proizvodstvo Bystrovozvodimykh Zdanii Iz Legkikh Metallokonstruktsii, Proektirovanie Bystrovozvodimykh Zdanii i Sooruzhenii Iz LSTK. http://andrometa.ru/.
  • Verbitskii, I.O. (2016) Primenenie Metallicheskogo Profilirovannogo Lista v Kachestve Nesushchego Elementa Monolitnykh Perekrytii Iz Penobetona. Polzunovskii al’manakh, 55–58. https://elibrary.ru/item.asp?id=28091544
  • Kadela, M. and Kozłowski, M. (2016) Foamed Concrete Layer as Sub-Structure of Industrial Concrete Floor. Procedia Engineering, No longer published by Elsevier, 161, 468–476. https://doi.org/10.1016/J.PROENG.2016.08.663.
  • Mohd Azaman, N.A., Abd Ghafar, N.H., Ayub, N. and Ibrahim, M.Z. (2017) Vibration Behaviour of Foamed Concrete Floor with Polypropylene and Rise Husk Ash Fibre. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 271, 012014. https://doi.org/10.1088/1757-899X/271/1/012014.
  • Sergeev A. S., Sukhorebrov D. G. and Pirieva S. IU. (2015) Primenenie Penobetona v Maloetazhnom Stroitel’stve. Mezhdunarodnaia Nauchno-Tekhnicheskaia Konferentsiia Molodykh Uchenykh BGTU Im. VG Shukhova, 2513–2517. https://elibrary.ru/item.asp?id=24615625
  • Meng, E., Yang, J., Zhou, B., Wang, C. and Li, J. (2022) Preparation and Thermal Performance of Phase Change Material (PCM) Foamed Cement Used for the Roof. Journal of Building Engineering, Elsevier, 53, 104579. https://doi.org/10.1016/J.JOBE.2022.104579.
  • Khudoerbekov E. S. and Sysoev O. E. (2021) Ispolzovanie Legkogo Betona Pri Proizvdsve Krovelnykh Rabot (Penobeton). Molodezh’ i Nauka: Aktual’nye Problemy Fundamental’nykh i Prikladnykh Issledovanii, 125–128. https://elibrary.ru/item.asp?id=46459613
  • Remnev V. V. (2020) The Practice of the Effective Use of Non-Autoclaved Foam Concrete. Bulletin of Science and Research Center of Construction, 91–97. https://elibrary.ru/ekfuaa
  • Solomakhin A. S. and Kamenev IU. A. (2016) Primenenie Neavtoklavnogo Polimertsementnogo Penobetona i Podderzhivaiushchego Karkasa Iz LSTK v Teploizoliatsionnykh Konstruktsiiakh Pokrytii Zdanii, Sooruzhenii. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka, 34–36. https://elibrary.ru/item.asp?id=26290895
  • Kadela, M., Kozłowski, M. and Kukiełka, A. (2017) Application of Foamed Concrete in Road Pavement – Weak Soil System. Procedia Engineering, No longer published by Elsevier, 193, 439–446. https://doi.org/10.1016/J.PROENG.2017.06.235.
  • Ge, Z., Yuan, H., Sun, R., Zhang, H., Wang, W. and Qi, H. (2020) Use of Green Calcium Sulphoaluminate Cement to Prepare Foamed Concrete for Road Embankment: A Feasibility Study. Construction and Building Materials, Elsevier, 237, 117791. https://doi.org/10.1016/J.CONBUILDMAT.2019.117791.
  • Cai, D.G., Wei, S.W., Ye, Y.S., Zhang, Q.L., Li, Z.G. and Li, S. (2021) Mechanical Properties of Lightweight Foam Concrete Filler for Roadbed of High-Speed Railway. Arabian Journal of Geosciences, Springer Science and Business Media Deutschland GmbH, 14, 1–10. https://doi.org/10.1007/S12517-021-07115-1/FIGURES/15.
  • Decký, M., Drusa, M., Zgútová, K., Blaško, M., Hájek, M. and Scherfel, W. (2016) Foam Concrete as New Material in Road Constructions. Procedia Engineering, No longer published by Elsevier, 161, 428–433. https://doi.org/10.1016/J.PROENG.2016.08.585.
  • Medres E.P. (2012) The Combined Road Embankment on Weak Soil Application of EPS-Blocks and Foam Concrete. Bulletin of Civil Engineers, 199–203. https://elibrary.ru/item.asp?id=19002483
  • Lesina L.L., M.L.S., E.S.G. (2018) The Methodology of Calculating and Designing of Pavement with Load-Bearing Structurefrom Foam Concret. Scientific challenges of logistical support of the armed forces of the Russian Federation, 108–116. https://elibrary.ru/yqwszn
  • Sycheva A. M., Solomakhin A. S., IAsnova N. S., Kamenev IU. A., Abukhasan M. S. and Rusanova E. V. (2017) Primenenie Polimertsementnogo Penobetona Dlia Povysheniia Sroka Sluzhby Zheleznodorozhnogo Polotna. Transport construction, 21–23. https://elibrary.ru/item.asp?id=30048658
  • Sychova, A., Sychov, M. and Rusanova, E. (2017) A Method of Obtaining Geonoiseprotective Foam Concrete for Use on Railway Transport. Procedia Engineering, No longer published by Elsevier, 189, 681–687. https://doi.org/10.1016/J.PROENG.2017.05.108.
  • Sagadeeva L. A. (2022) Ispolzovanie Monolitnogo Penobetona Dlia Teploizoliatsii Truboprovodov. Tinchurinskie Chteniia-2022" Energetika i Tsifrovaia Transformatsiia", 180–182. https://elibrary.ru/item.asp?id=49190416
Еще
Статья обзорная