Boundary value problems for a mixed fourth-order parabolic-hyperbolic equation with discontinuous gluing conditions
Автор: Abdumitalip Uulu Kubatbek
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Физико-математические науки
Статья в выпуске: 11 т.8, 2022 года.
Бесплатный доступ
The theorem of the existence and uniqueness of the solution of the boundary value problem for the equation in partial derivatives of the fourth order with variable coefficients containing the product of the mixed parabolic-hyperbolic operator and the differential operator of the oscillation string with discontinuous conditions of gluing in the pentagon to the plane is proved. By the method of reducing the order of equations, the solvability of the boundary value problem is reduced to the solution of the Tricomi problem for the mixed parabola-hyperbolic equation with variable coefficients and discontinuous gluing conditions. Solving this problem is reduced to the solution of Fredholm’s integral equation of the second order relative to the trace of the derivative function on y along the line of variation of the equation type. In the hyperbolic part of the domain, the representation of the solution of the problem for the hyperbolic equation with the smallest terms was obtained by using the Riemann function method. In the parabolic part of the domain, the solution of the first boundary value problem for the parabolic equation with the smallest terms is obtained by the method of successive approximations and the Green’s function. As a result, the solution of the problem is realized by the method of solving the Gursa problem and the first boundary value problem for the equation of string oscillation.
Boundary value problems, parabolic-hyperbolic operator, integral equations, riemann and green's function
Короткий адрес: https://sciup.org/14126123
IDR: 14126123 | DOI: 10.33619/2414-2948/84/01