L-stability of nonlinear systems represented by state models
Автор: Yeletskikh I.A., Yeletskikh K.S., Shcherbatykh V.E.
Рубрика: Краткие сообщения
Статья в выпуске: 2 т.14, 2021 года.
Бесплатный доступ
Stability theory plays a key role in systems theory and engineering. The stability of equilibrium points is usually considered within the framework of the stability theory developed by the Russian mathematician and mechanic A.M. Lyapunov (1857-1918), who laid its foundations and gave it its name. Nowadays, the point of view on stability has become very widespread, as stability in relation to disturbance of the input signal. The research is based on the space-state approach for modelling nonlinear dynamic systems and an alternative "input-output'' approach. The input-output model is implemented without explicit knowledge of the internal structure determined by the equation of state. The system is considered as a "black box'', which is accessed only through the input and output terminals ports. The concept of stability in terms of "input-output'' is based on the definition of L-stability of a nonlinear system, the method of Lyapunov functions and its generalization to the case of nonlinear dynamical systems. The interpretation of the problem on accumulation of perturbations is reduced to the problem on finding the norm of an operator, which makes it possible to expand the range of models under study, depending on the space in which the input and output signals act.
Dynamical system, l-stability, exponential stability, causality, gain factor
Короткий адрес: https://sciup.org/147235045
IDR: 147235045 | DOI: 10.14529/mmp210209
Список литературы L-stability of nonlinear systems represented by state models
- Максвелл, Д.К. Теория автоматического регулирования (линеаризованные задачи) / Д.К. Максвелл, И.А. Вышнеградский, А. Стодола. - М.: Изд-во АН СССР, 1949.
- Раус, Э.Дж. Об устойчивости заданного состояния движения, в частности, установившегося движения / Э.Дж. Раус. - М.; Ижевск: Институт компьютерных исследований, 2002.
- Жуковский, Н.Е. О прочности движения / Н.Е. Жуковский. - М.: Гостехиздат, 1948.
- Ляпунов, А.М. Общая задача об устойчивости движения / А.М. Ляпунов. - М.: Книга по требованию, 2014.
- Халил, Х.К. Нелинейные системы / Х.К. Халил. - М.; Ижевск: Институт компьютерных исследований, 2009.
- Ла-Салль, Ж. Исследование устойчивости прямым методом Ляпунова / Ж. Ла-Салль, С. Лефшец. - М.: Мир, 1964.