Laboratory separator of bulk materials

Автор: E. G. Danilenko, S. V. Telegin

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Technological processes and material science

Статья в выпуске: 4 vol.21, 2020 года.

Бесплатный доступ

New materials for spacecraft radiation screens engineering require a fine classification of powder materials by particle size. The article concerns the construction of powder materials laboratory separator. This type of material separation is related to gravity methods. The Moseley laboratory separator serves as the prototype of the construction with table longitudinal shaking and diametrical vibrations by means of buffers during the separation process. The unbalanced oscillator yields deck separation surface harmonic vibrations in all directions. The unbalanced oscillator DC motor voltage control gradually alters the vibration frequency and supports finer separation of the material. A power pipe enables to conduct perpetual separation process. In prototype, in contrast, up to 100 g weight is processed for up to 5 minutes. To improve the materials fine and small classes separation efficiency, riffles are made on the separation surface, which determine the places of concentration of material particles. As a result of the conducted researches for elimination of the secondary circulation flows, a system of diametrical reefing is worked out: the riffle is approximately equal to the maximum particle size of the separated material and is equal to 0.2 mm in this construction; the distance between riffles is equal to 50 mm, the tilt angle is 80 degrees relative to the deck longitudinal side. The particle motion depends on the inclination angle of the separation surface. Large particles move upwards at angles of up to 5 degrees, and downwards at angles higher than 5 degrees. Vibration frequency and amplitude alteration, as well as adjusting the inclination angle of separation surface enables to move and adjust the speed of different properties and sizes of test material. The laboratory separator work is based on the physical effects, which enable to vary the location of the power pipe. This fact allows the construction to be adapted to a variety of specific conditions and expands the construction sphere. The separator construction is simple for production and operation, and can be quickly reconfigured if necessary. The separator portability allows it to be transported.

Еще

Shielding, composite material, separator, fractional composition, boron carbide.

Короткий адрес: https://sciup.org/148321778

IDR: 148321778   |   DOI: 10.31772/2587-6066-2020-21-4-550-555

Список литературы Laboratory separator of bulk materials

  • Suzdalev I. Nanotekhnologiya: fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov [Nanotechnology: physical chemistry of nanoclusters, nanostructures and nanomaterials]. In 2 books. Moscow, ComBook Publ., 2006, 592 p.
  • Novikov L. S. Radiatsionnye vozdeystviya na materialy kosmicheskikh apparatov [Radiation effects on materials of spacecraft: a tutorial]. Moscow, University book Publ., 2010, P. 4–5.
  • Perspektivnye materialy. Struktura i metody issledovaniya [Advanced materials. Research structure and methods]. Ed. D. L. Meersona. Togliatti: TSU, MISIS Publ., 2006, 536 p.
  • Bezrodnykh I. P., Morozova E. I., Petrukovich A. A., Kazantsev S. G., Kochetov I. V., Semenov V. T. [Bremsstrahlung of electrons in the substance of the spacecraft. Calculation method]. Voprosy elektromekhaniki. Tr. NPP VNIIEM. 2011, Vol. 120, No 1, P. 37–44 (In Russ.).
  • Gusev N. G., Klimanov V. A., Mashkovich V. P., Suvorov A. P. Zashchita ot ioniziruyushchikh izlucheniy [Protection against ionizing radiation]. In 2 books. Moscow, Energoatomizdat Publ., 1989.
  • Ying Wang, Guangke Wang, Tao Hu, Shipeng Wen, Shui Hu, Li Liu. Enhanced photon shielding efficiency of a flexible and lightweight rare earth/polymer composite: A Monte Carlo simulation study. Nuclear Engineering and Technology. 2020, Vol. 52, No. 7, P. 1565–1570
  • Kuznetsov N. V. Radiatsionnaya opasnost' na okolozemnykh orbitakh i mezhplanetnykh traektoriyakh kosmicheskikh apparatov [Radiation hazard in near-earth orbits and interplanetary trajectories of spacecraft]. Available at: http://nuclphys.sinp.msu.ru/crd/crd3.htm (accessed 19.10.2020).
  • Richard P. Welle, David Hinckley Aerospace Nano / Picosatellites Program. Available at: https://space.skyrocket.de/doc_sdat/aerocube-8-impact.htm (accessed 20.10.2020).
  • Guillaume T. OUFTI-2 educational CubeSat project of University of Liège , Belgium OUFTI-2 educational CubeSat project of University of Liège, Belgium 2017. May.
  • Bezrodnykh E. I. Morozova A. A. [Petrukovich and others. Radiation conditions in geostationary]. Voprosy elektromekhaniki. Tr. NPP VNIIEM. 2010, Vol. 117, No 4, P. 33–42 (In Russ.).
  • Daniel Dupont. Nuclear explosions in orbit. In the world of science (Scientific American) 2004, No. 9, P. 62–70.
  • Lobanovskiy Yu. I. Tsena kosmosa: skol'ko stoit vykhod na orbitu? [Cost of space: how much does it cost to enter orbit?]. Available at: http://www.synerjetics.ru/article/cost.pdf. (accessed 25.10.2020).
  • Vaytuzin O. P., Kuznetsov A. A. Izuchenie mikrostkury metallov metodom komp'yuternoy opticheskoy mikroskopii [Study of the microstructure of metals by the method of computer optical microscopy]. Krasnoyarsk, Siberian state aerospace un-t Publ., 2006, 100 p.
  • Pliny, С. Р. S. (circa 70). Natural History Book 33, 21.
  • Agricola, G. (1556). De Re Metallica Trans Hoover, H. C. and Hoover, L. H., Dover Publications, N. Y. 1950, Book XIII.
  • Bert R. O., Millza K. Tekhnologiya gravitatsionnogo obogashcheniya [Gravity separation technology]. Moscow, Bosom Publ., 1990, 574 p.
  • Anon (1979). British-developed laboratory separator aids small-scale mineral studies. Min. Mag, Jan. 45–48.
  • Shokhin V. N., Lopatin A. G. Gravitatsionnye protsessy obogashcheniya [Gravitational enrichment processes]. Moscow, Bosom Publ., 1980, P. 256–257.
Еще
Статья научная