Lax equations on Lie superalgebras

Автор: Karabanov A.

Журнал: Известия Коми научного центра УрО РАН @izvestia-komisc

Рубрика: Научные статьи

Статья в выпуске: 5 (71), 2024 года.

Бесплатный доступ

It is demonstrated that the standard construction of Lax equations on Lie algebras can be extended to Lie superalgebras, with the even subspace carrying the usual Lax equations. The extended equations inherit the existence of the canonical trace polynomial integrals of motion. An extra set of integrals exists in the odd subspace, with a nontrivial homological structure of the orbit space. This establishes a curious algebraic link between integrable evolution equations, supersymmetry and the deformation theory.

Lie superalgebras, lax equations, integrals of motion, homological algebra, deformation theory

Короткий адрес: https://sciup.org/149146265

IDR: 149146265   |   DOI: 10.19110/1994-5655-2024-5-5-10

Список литературы Lax equations on Lie superalgebras

  • Kodaira, K. On the existence of deformations of complex analytic structures / K. Kodaira, L. Nirenberg, D. C. Spencer // Ann. of Math. – 1958. – Vol. 68. – P. 450.
  • Gerstenhaber, M. The cohomology structure of an associative ring / M. Gerstenhaber // Annals of Mathematics, Second Series. – 1963. – Vol. 78. – P. 267.
  • Ross, L. E. Representations of graded Lie algebras / L. E. Ross // Trans. Amer. Math. Soc. – 1965. – Vol. 120. – P. 17.
  • Nijenhuis, A. Cohomology and deformations in graded Lie algebras / A. Nijenhuis, R. W. Richardson // Bull. Amer. Math. Soc. – 1966. – Vol. 72. – P. 1.
  • Hochschild, G. On the cohomology groups of an associative algebra / G. Hochschild // Annals of Mathematics, Second Series. – 1945. – Vol. 46(1). – P. 58.
  • Chevalley, C. Cohomology theory of Lie groups and Lie algebras/ C. Chevalley, S. Eilenberg // Trans. Amer. Math. Soc. – 1948. – Vol. 63. – P. 85.
  • Berezin, F. A. The method of second quantization / F. A. Berezin. – New York: Academic Press, 1966.
  • Kac, V.G. Lie superalgebras / V. G. Kac // Advances in Mathematics. – 1977. – Vol. 26. – P. 8.
  • Witten, E. Supersymmetry and Morse theory / E. Witten // J. Diff. Geom. – 1982. – Vol. 17. – P. 661.
  • Sergeev, A. N. Lie superalgebras and Calogero-Moser- Sutherland systems / A. N. Sergeev // J. Math. Sci. – 2018. – Vol. 235. – P. 756.
  • Gardner, C. S. Method for solving the Korteweg-deVries equation / C. S. Gardner, J. Green, M. Kruskal, R. Miura // Phys. Rev. Lett. – 1967. – Vol. 19. – P. 1095.
  • Lax, P. D. Integrals of nonlinear equations of evolution and solitary waves / P. D. Lax // Comm. Pure Appl. Math. – 1968. – Vol. 21. – P. 467.
  • Zakharov, V. E. Exact theory of two-dimensional self-focusing and one-dimensional self-mofulation of waves in nonlinear media / V. E. Zakharov, A. B. Shabat // Sov. Phys. JETP. – 1972. – Vol. 34. – P. 62.
  • Ablowitz, M. J. Solitons and inverse scattering transform / M. J. Ablowitz, H. Segur. – Philadelphia: SIAM, 1981. – P. 435.
  • Toda, M. Theory of nonlinear lattices / M. Toda. – Berlin: Springer, 1989.
  • Bordemann, M. Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups / M Bordemann // Commun. Math. Phys. – 1990. – Vol. 135. – P. 201–216.
  • Karabanov, A. Tensor extensions of Lax equations / A. Karabanov // Proceedings of the Komi Science Centre of the Ural Branch of the Russian Academy of Sciences. Series “Physical and Mathematical Sciences”. – 2023. – № 4 (62). – P. 5–9.
Еще
Статья научная